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Abstract

A method of calculating the coupling impedance and the wake function
of resistive beam pipes is given including the short-range behavior of the
wake. The pipe is uniform longitudinally but the cross section is arbi-
trary. The beam is assumed to be ultra-relativistic. A simple computer
code is written using the boundary element method. Some results for
elliptic, rectangular and hyperbolic pipes are presented.
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1 Introduction

The resistive wall impedance has been a topic in accelerator physics since 1960’s and
is thought to be well known but, in fact, it calls for further investigation still now. For
example, in the future linear colliders, it causes some limitation of the machine design
where the beam pipe is very close to the tiny beam such as in the collimators to scrape
out the beam halo and in the final quadrupole magnets [1]. In these cases there is a
possibility that we adopt beam pipes which are not round. The resistive wall impedance
of non-axisymmetric structures has not yet been fully investigated. Up to now, the only
wall shapes for which the exact solution i1s known including an arbitrary wave number
and arbitrary locations of particles are the round pipe and two parallel plates [2,3,4,5].

Recently, Gluckstern, van Zeijts and Zotter {6} (GZZ) have derived formulas of
longitudinal and transverse impedances for pipes with general cross section by using a
beautiful formalism. Their resulting formulas are expressed as integrals of a function
over the circumference of the cross section. This function is the tangential magnetic
field on the wall in the absence of resistivity. Therefore, the formulas can easily be
evaluated once the Laplace equation is solved analytically or numerically.

In this note, we are aiming some more advance in the following three points.

Firstly, although GZ7 give the analytic solutions for the elliptic and rectangular
cross-sections using their general formulas, we still need computers for other shapes in
order to evaluate the formulas. We shall give a computer algorithm and some results
for various shapes in this note.

Secondly, GZZ formula for the transverse impedance applies when the source particle
(a dipole charge) and the witness particle are both on the axis (mirror symmetry of
the pipe is assumed). Acutally, however, we need information for more geneal cases.
The Lorentz force F on the witness particle is a function of the transverse position of
the source particle r, = (z,,y;) and of the witness particle v, = (2., y,) itself. For
example, if the wall shape has mirror symmetries w.r.t. the z and y axes and », and
r, are small, linear terms will suffice. The vertical force is then F, = 1y, + ot
The factor ¢; is usually called transverse impedance. The GZZ formula refers to this
coefficient. In the case of a round pipe, ¢, vanishes because of the azimuthal symmetry.
In general, however, this is not true. In fact, GZZ give this term analytically for the
elliptic and rectangular pipes (they call this term ‘incoherent’) but general formulas
for this term are not given. If the pipe is not round, ¢; is usually comparable to ¢; in
magnitude.

This term ¢; can play a role in some cases. For example, consider the collimator
problem. Usually, collimators are designed such that the kick angle by the ¢; term is
smaller than the beam divergence angle when r, is comparable to the beam size. This
is enough for round pipes, because we need not take into account the source particles
(bulk of the beam) far from the axis. However, if the pipe is not round, the ¢, term
can be very large because we need to scrape large amplitude particles (large v.,).

Our computer code can compute the longitudinal and transverse forces for arbitrary
locations of particles.



Thirdly, the formulas by GZZ apply only in the asymptotic region
po/ L < k<< (L2p)™*3,  or  L*/po> 2> (L%po)'f. (1.1)

Here k is the wave number, z the distance between the source and witness particles, L
the typical dimension of the wall crosssection. The parameter pg, having the dimension
of length, is defined by

1
po = v (1.2)

where jp is the permeability of vacuum and ¢ the conductivity of the wall material.
(po & 0.5x 107°m for copper at room temparature.) In the region where these inequal-
ities are satisfied, the wake function is a simple power of z (2~%2 for the longitudinal
wake and z='/? for the transverse.)

The first inequality sign in each expression in eq.(1.1) comes from i (skin depth)
< L. (When the wall material is thin, L must be understood as the thickness of the
material.) The physical meaning of the second inequality sign was clearly explained
by K. Bane [3]. The finite conductivity slightly reduces the phase velocity, which is
otherwise larger than the speed of light, so that the wave can couple to the beam,
resulting a low-Q resonance. The latter inequality is not very important in applications
so far, but it can play a role in the near future for very short bunches. For example,
in recent designs of the final focus quad for linear colliders, the aperture is of order
of lem. Then, the scale length is (L?pg)Y? ~ 20um, which is not extremely small
compared with the typical bunch length 100u#m. Moreover, a significant deviation from
the simple power low actually starts at several times the scale length defined above.
Therefore, we are already near the marginal point.

Our algorithm allows to compute such a short-range wake but, because of this
problem, it is much more complicated than that in GZZ.

We will derive formulas of the impedance and the wake function in the next section.
Sec. 3 discusses the method of numerical computation. The code is applied to pipes
with various shapes and the results are described in Sec. 4.

2 Derivation of Impedance Formula

Assumptions and notation

We assume throughout that the pipe is uniform longitudinally and the beam is ultra-
relativistic. The z-axis is parallel to the pipe. In the (z,y) plane, the vacuum region
surrounded by the wall is denoted by 2. The coordinate s is the length measured along
the wall surface Q2. The unit normal (outward from 0} and tangential vectors at s are
denoted by n(s) and 7(s), respectively, and the unit vector along z by e,. The three
vectors m, T and e, form a right-handed basis. The source and the witness charge
(unit charge) are located at r, = (z,,9,) and v, = (2, ¥.,), respectively.



We work in the frequency domain and define the Fourier transform of any function
of time f(t) by [ f(t)e™*dt (without the factor 1/2x). All the field quantities which are
effective on the wake field are proportional to exp ¢(kz — wt) (k = w/c) because of the
longitudinal uniformity. Our definitions of the fields do not include this factor. Thus,
to go to the time domain, one need to multiply ce’**~<) /21 and to integrate over k.
We assume k is positive. Formulas for negative £ can easily be obtained because the
physical quantities are real.

We write the electric and magnetic fields as B + E® and H + H?, where the
superscript (0) denotes solutions in the case of the perfectly conducting wall with the
same wall shape. One can easily show that the transverse Lorentz force F; = E; +
Zye,x H (the subscript L denotes the component perpendicular to e.) satisfies

1

F, = ikV_LEza (2.3)

where V| is the two-dimensional gradient. Therefore, all the needed information is
obtained from E,, since E© and H® do not contribute to the wake function.

Kirchhoff integral formula

Since (E,H) obeys the sourceless Maxwell equation, it satisfies the (vector version
of the) Kirchhoff integral formula (see, for example,[7]). In our case where the field is
proportional to ¢, the formula can be written as

Ef(r) = f ds' [~ik(ZoH, — E)G(r, ') - E,n' - V,G(r, )], (2.4)
E (r) = fds' [—ik(n'E, — 7' ZoH,)G(r,¥") ~ E,V' G(r,*') — E,e,xV' G(r, r')],
(refl). (2.5)

Here, § is the integral along 0 and the prime refers to the quantities evaluated on
the wall at s'. (We omit the primes for the field variables on the right-hand side.) The
function G is the Green function satisfying

ALG(r, ¥y = —4(r — 7). (2.6)

The Kirchhoff formula is valid for any Green function satisfying this equation but for
simplicity we choose the solution in the free space;

) 1 , , I r—»
G(r, r ) = —ﬁl()g |T — r’], VJ_G(T, r) = ﬁ;m (27)

By taking the limit that r approaches the wall surface 92 (from inside ), we obtain
integral equations where only the fields on the wall appear. Let us define following
operators which transform functions on 991.

(DF)s) = § a5/ (w' - VLG)I(S) + F(5) (28)
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GF)(s) = §dSGlr, P)f(S), (2.9)
NF)(s) = § ds'(m- VLGYF(S") + £(5), (2.10)
(TH(s) = as(r - VIGf(), (2.11)
€F)(s) = $ds'(n-W)G(r,r)f(s) = §ds'(x - T)G(r, P)f(5),  (212)
($)s) = ds'(r- m)G(r, ¥)f(s) = ~ fds'(m- ¥)G(r, #)f(s).  (213)

Here, rigorously speaking, r on the right-hand side must be replaced by r(s) — en(s)
and the limit € — 0, must be taken. Then, from egs.(2.4) and (2.5) we obtain integral
equations

DI|E,) = —ikG |ZoH, — E,), (2.14)
N 'Eﬂ) -7 IET) = —ik [C IEZ) +8 |ZOHZ)] ’ (2'15)
T|E) + N |E:) = —ik[S|E,) —C|%,H,)]. (2.16)

For notational convenience, we have introduced the ‘ket’ vector | } to denote a function
¥

on 9.

Approximate boundary condition

In order to solve eqs. (2.14), (2.15) and (2.16), we need the boundary conditions
on the wall surface. Under the assumption that the skin depth &, is much smaller
than L, the typical dimension of £, (and than the thickness of the wall material), the
resistivity effect can be expressed by approximate boundary conditions.

Within the wall material, the Maxell equation for the field having the (z,t) depen-
dence exp[tk(z — ct)] can be written in the form (for a while, we shall denote the total
field by E and H)

ALE+k*E =0, Vi -E, +ikE, =0, (2.17)

ZoH = %(V* +ike,) x E, (2.18)

- 1+14 g [k [ 2
o = il /ﬂo—ckd _ 6-:2 = il = okin = s (2.19)

where pg has already been defined in eq.(1.2).
Solutions to the equation for E are in general linear combinations of the form

E(r) = Eoe™™", (2.20)

with

where @ is a unit vector in the (z,y) plane and Ej; is a constant satisfying

(ra+ke,)- Eog=0. (2.21)
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Consider the field in the vacuum region near the boundary. The field expressed by
eq.{2.20) has a very rapid variation along the wall surface with the typical scale length
8,1im unless a is almost parallel to m». In the vacuum region, the typical length of field
variation is the wavelength A = 1/k or the curvature radius of the surface, the latter
being represented by L. (Rigorously speaking, this is not true if the wall has a cusp,
where the curvature radius is infinitesimally small.) Therefore, so long as i < A
and 6,1, < L, @ =~ n holds approximately. The condition égin <€ A is equivalent to
A > po, which is never violated in practice. (In any case, we cannot trust Ohm’s law
down to such a small scale po.) Therefore, our basic assumption is din < L only.
From eq.(2.18), we obtain approximate boundary conditions

K K

ZQHT = —EEZ, ZgHz = EET (222)
Note that the components appearing in these expressions are continuous across the
boundary. Nothing can be said about the normal component under our assumption
Ssin <€ L. Returning to the original notation where the field is expressed like E 4 E ©),

we write the boundary conditions as

Zo(H, + HO) = —%E,,, (2.23)
ZoH, = %E,. (2.24)

(Note that the longitudinal fields and the tangential electric field are zero in the case
of perfectly conducting walls.) The term H, in eq.(2.23) is ignored in GZZ. When
the resistivity is sufficiently small, we can treat it as a perturbation. The wall current,
which is proportional to H{®), causes a longitudinal electric field E, due to the resistivity.
According to Ampére’s law Vx ZoH = —ik E, E, generates a magnetic field. ZgH,
created in this way is of the order of L xEE, ~ Lkx{k/&)ZoH® ~ kL& i, ZoHP).
Therefore, only when k%Lé&;;, < 1, the perturbation treatment is justified. This is the
condition (1.1) (upper bound of &£) mentioned in the introduction.

Solving the integral equation

Now, let us return to the integral equations (2.14), (2.15) and (2.16). Replacing H,
in eqs.(2.15) and (2.16) with eq.(2.24), we can eliminate E, and express E, in terms
of E,. Then, substituting the resulting expression into eq.(2.14) and using the other
boundary condition (2.23), we get an integral equation for F,.

Let us compare the magnitude of each term appearing in eqs.(2.15) and (2.16). Since
the typical scale of the operators C and & 1s the typical wall dimension L, the term with
H,in eqgs.(2.15) and (2.16) is ~ kL{x/k)E; ~ (L/bsin) E>, while the second term in the
left-hand side is ~ E, because the operators A" and T are of order unity. Therefore, we
can ignore the £, terms on the left-hand side. Then, eqs.(2.15) and (2.16) can formally
be solved as

E,) = —ikM|E,), (2.25)



where

M= (N +8C'T) 1 (C +8C'S). (2.26)

(We assume the existence of the inverse operators.) Note that the boundary condition
for H, is not actually used except the fact that the coefficient «/k is very large.
Now, let us solve eq.(2.14) with the boundary condition (2.23);

D|E,) = ikG ’%E + ZoH® + E,,> . (2.27)

Since the operator G is O(L), the left-hand side of this equation is smaller than the
first term on the right-hand side by the factor O(1/kL) ~ O(é44in/L) and, therefore,
we can ignore the left-hand side. Thus, by using eq.(2.25), we obtain

2 -1
|E,) = k [1 - z’k—M} |2,HO). (2.28)

[ K

Thus, once the field for the perfectly conducting wall is given, we can get E, on the
wall surface.

Solution for the perfectly conducting case

Next, let us find the field for the case of the perfectly conducting wall. From the
Maxwell equations, one can easily find that the longitudinal fields vanish E(® = H(® =
0 and the transverse electric field ES[_]) satisfies

EY = _7,V,4, (2.29)

with
Ajp=—-8r-r,) and ¢=0 (onthewall) (2.30)

The transverse magnetic field is given by
ZoHY = e, x B, (2.31)

We split ¢ into two parts g, and ¢, the former being the solution in the free space
gs{r) = G(r,r,). Then, the latter obeys the sourceless Laplace equation with the
boundary condition ¢; = —g, on the wall and, therefore, satisfies the Kirchhoff integral
formula

D|—g.) = G |0¢1/0n) . (2.32)
Thus, we obtain
|2 HO)Y = |Ey) = 20 |0g/0n + 0¢1/0n) = Zo |u), (2.33)
where
ju) = G™'Dg.) — |0g,/On) . (2.34)



Thus, we have E, on the wall as

2 -1
_ Lok l—iE—M} ) . - (2.35)

')
1) K K

The field at the witness particle
To find E, at the witness particle, we go back to the Kirchhofl formula (2.4), which
can formally be written as

E.(ry) = —ik (g9,|ZoH. — E.) — (¢, |E.) , (2.36)
where g, and ¢/, are functions on 95} defined by
guw(8) = Gry, r) and g, =08g,/0n=n -V, G(r,,r). (2.37)

The brakets { | } define the scalar product as an integral over the circumference of the
crosssection;

{ulvy = }gds u"(s)v(s), (2.38)

where the asterisk denotes complex conjugate. Since the combination ZpH,—FE,, satisfies
eq.(2.14), we can rewrite eq.(2.36) in terms of E, only as

E.(rw) = {v|E:), (2.39)

where

(0 = {90l g7 D~ {gul, or  |o)=1G7"D]"|gu) ~ gL} (2.40)
Here, the superscript 1 denotes the adjoint of an operator defined according to the
scalar product (2.38), i.e, <.Afu[v> = (u|Av) for any functions u and v. In the above
case, the superscript can be omitted because G~'D is self-adjoint (see Appendix. A).

Thus, finally we can write E, at the witness particle in the form

k ko1
E.(ry,)= ZOE {v] {1 — z;M] |u) . (2.41)

FEigenvalues and eigenfunctions of the operator M

Let us rewrite eq.(2.41) in a form more convenient for numerical calculations. As is
proved in Appendix. A, the operator M is self-adjoint. Therefore, the eigenvalues are
real. We denote the eigenvalue by u, and the eigenfunction by |}, which is normalized
as {a|a) = 1. Then, eq.(2.41) can be written as

E.(ry) = ZO% Z l_zéw (2.42)
where
Co(To, Ts) = (v]a) (ov|u) . (2.43)
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The transverse force is then given, using eq.(2.3), by

. .Zg 6ca/6rw
Fi(r,)= —i— za: TR ) (2.44)

where the coefficients d¢, /07, can be calculated simply by using g, /0¥, instead of
gw in eq.(2.37).

A nice feature of these expressions (2.42) and (2.44) is that the dependences on
the location of the source and the witness particles are all confined in the function u
and v, respectively. The most time-consuming part is the diagonalization of M, which
depends on the shape of the wall but does not depend on r, and r,, nor on the wave
number k.

Asymptotic form for k < (L2p,)~1/?

Because pioq =O(L) and, therefore, (k?/k)pq = Ok 258! ’L), one can ignore the
term with p, in the denominator of eq.(2.42) in the asymptotic region k < (L2pe)~1/3.
Since the sum |&) {e| over all the eigenfunctions is identity, we get

k
B, = Zo (o) = zof fdsv(u(s), (k< (D)) (249)
When r, = r,,, we have u = v and, consequently,
E—Zﬁfd 2 k< (L2p0)~11°, 2.46
c=Zo- pds lu(s)’, (k< (Do) r = ry) (2.46)

which is equivalent to the longitudinal impedance formula obtained by GZZ. Thus, if
one is interested only in the asymptotic form, the operator M is not needed.
The asymptotic form for the transverse force is

ov*( .s)

u(s)
ar, ’

Fo(r,) = —i2® f ds (k < (I2py)13). (2.47)

Usual definition of the transverse impedance (per unit displacement of the source par-
ticle per unit pipe length) is equivalent to Z, = dF,/dy, (vertical impedance). Thus,
for r, = r,,, we obtain

“z—fd

which again agrees with the transverse impedance formula of GZZ.

(k < (L*p0) ™2 v, = 1), (2.48)

By,,

Wake function
Since all the terms in egs.(2.42) and (2.44) have the same wavenumber dependence,
the wake function can easily be computed from two basic functions f; and fr defined



in Appendix. B;

+o0 yA
Wp(z) = %/_m B (ke *cdk = Z—c—n—?-cafL (z/z4), (2.49}
_ 1 gt —ikz cZ Zy OCy
W_L(Z) = 2_71' - F_L(]C)e ik cdk = za: “Oa rwa(z/za) (250)
where
7o = [(20a)" o] °. (2.51)

(The sign of Wy, is chosen such that the accecelaration is positive. Also note that the
transverse impedance in the usual definition is 0W, / 0z, and W, /8y,.) The asymptotic
forms for large z > (L*po)'/? are found to be

Wile) ~ s S o = SV (o). (2.52)

Wil Sy e o/ ( ey > (2.53)

using the asymtotic forms for fr, and fr given in Appendix. B.

The Ohmic loss
The energy dissipated in a unit volume in the wall material by a point charge at r,
is given by
ca oo 9
— dk |E|". 2.54
= [ dk|E| (2.54)

Since the field in the material can be approximated by eq.(2.20) with & = n, we obtain
the energy loss per unit pipe length by integrating over the normal direction and over
the circumference as

df€  co [ Oskin 2
—sz—ﬂf_mdk}{ds 5| Bo(k,s)) (2.55)

Note that By is the field on the wall just outside dQ. From the condition (2.21), we find
E.JE, = O{6,4:n/A). Since E, and E, are continuous across 9f), we may use the values
in Q. From the fact that H,/E,=0(1), which can be obtained by eqs.(2.15) and (2.16),
and from eq.(2.24), we find that £, /E,=O(6skin/A). Thus, we may ignore E, and E,
in {Eo| in eq.(2.55) and replace it by |E,|. By using eq.(2.35) and the eigenvalues of
M, we get

f ds|E.|" = (E.|E.) = Z2kpo Y (ula) [1 — 820 00| (alu).  (2.56)

The integration over k¥ can be performed analytically with the result

g _ CZD Z Ca(rsa rs)
S dz 2 & 7.

: (2.57)
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where ¢, is defined in eq.(2.43) but is to be evaluated for r, = r,, or, v = u. From
€q.(2.49) with the normalization fz(0,.) = —1, we can reproduce the well-known formula
of the loss factor

k1 (0) = _% - —%WL(O+). (2.58)

When the source charge is not a point but has a finite length we need to multiply
the Fourier spectrum of the charge distribution, which is e=*°°% in the case of Gaussian
distribution with the r.m.s. length o,. The loss parameter is given by

o0 | P cZoco(ry, r,)
=— Aol g, = § 20T T Ts)
k(o) = /0 WL(z) \/4_7!_026 dz = Ea 2 9r.{0:/ za), (2.59)

where the function gy, is defined in Appendix. B. The asymptotic form for long bunches

k(o) ~ (\;;/-4 CZ°3‘,/2_Z Ca (2.60)

The AC Conductivity at High Frequencies

As pointed out by Bane [3], the AC conductivity is nolonger equal to the DC conduc-
tivity at very high frequencies and is approximately expressed by /(1 ~ iwr), 7 being
the relaxation time of the metal. Qur formulas in the frequency domain are still valid
in such a case. The wake function, however, cannot be expressed by the two functions
fo(¢) and fr((). We need one more parameter related to the relaxation time 7. Thus,
fi(z/z) and fr(z/z,) in eqs.{2.49) and (2.50) have to be replaced with two-argument
functions fr(z/z4,¢7/2,) and fr(z/z,,er/z,) defined in Appendix. B. Since the AC
conductivity effect plays a role only at high frequencies, the asymptotic forms of the
wake functions (2.52) and (2.53) remain unchanged but, of course, the condition z > cr
is needed in addition to z 3> {L2po)'/°.

3 Numerical Methods

The formulas given in the previous section can easily be coded. What is needed is to
express all the operators in the form of matrices, by discretizing the wall shape and
the functions. Select V points (nodes) on the wall and denote their s coordinate by s;
(¢=1,2,...N). The simplest way of discretization is to approximate a function f(s) by a
piece-wise constant function:
N
f(s) =Y fipi(s), (3.61)
i=1
with VT )
1 E,' (5; <8< Sit1
i(8) = 3.62
) ={ VF s , (362)
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where {; = 3;41 — 8; is the length of the 2-th segment. The normalization of p; is chosen
such that the norm of f is given by

(F19) = $ds|f) = SUAF (3.:63)

Thus, the approximate value of f(s) on the i-th segment is not f; but f;//T;.
Let us denote the operator defined by a kernel K(s,s’) by K; i.e., the operator form

g} = K[} (3.64)

corresponds to the integral form
g(s) = fdsf{(s, s f(s). (3.65)

Let us suppose that f(s) and ¢(s) are approximately expressed by f; and g;. Multiplying
€q.(3.65) by p;(s) and integrating over s, we obtain the corresponding matrix form

N
9= Ki;f; (3.66)
=1

with 1 o sien
K= —— f s [T asK (s, ). 3.67
=Tl [ asK (s, (3.67)

We must carefully treat the kernel of the operators D, A and T because of their strong
singularity near s = s’. The definition (2.8) of the operator D must be understood as
the limit of the field point approaching the wall from inside Q, i.e.,

(DF)(s) = f(s) + Jim §ds'n(s) - [VLG(r, 2 Dlpariyemn [(5) (3.68)

where r(s) denotes the point on the wall. If the wall is smooth at the point s, the limit
can be expressed in the form

(DI)(s) = 55(s) + pv f ds'n(s) - VAG(r(s), s(NA),  (3.69)
where pv denotes Cauchy’s principal value. The same expression holds for & with n(s')
replaced with m(s). For the definition (2.11) of 7 we only need to take the principal
value.

To perform the integration in eq.(3.67), we need the boundary shape between s; and
8i41. The simplest choice is the straight line but we use the cubic spline interpolation
for better accuracy.

Thus, we can now express the operators G, D, N, 7, € and & in matrix forms. The
resulting matrices have the symmetry

Gi; =G4, Cij= Ciiy  Sij= =54, Di;+ N;i =65 (3.70)

These relations are exactly satisfied with a finite number of nodes N owing to the pre-
scription (3.67). Unfortunately, however, the symmetries of the matrices corresponding
to the operators G~'D and M, whose elements are computed not from explicit kernels
but from matrix manipulations, are violated by O(1/N).
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4 Applications

Round pipe

Let us first illustrate our formalism for a round pipe. In this case everything can be
done analytically.

The kernels of all the operators depend only on s—g', or, equivalently, —¢’, where
¢ is the azimuthal angle in the (z,y) plane. Also, they are periodic in #—#’. Therefore,
the eigenfunctions have the form [m} = ¢ /+/2ra (m=0,41,+2,...). One can compute
the eigenvalues analytically with the result

_ { af2 (m = 0)
T La/(ml 1) (m#0),
where a is the pipe radius. One finds that the three modes m=0 and +1 are degenerate.

Let the source particle be on the x-axis and denote the location of the witness
particle by the polar coordinate r,, and 8,,. The functions u and v are found easily as

(4.71)

1 a? — a:_,? 1 3 z \ ™. s
= = — e 4.72
u(6) 2rxa o® + 2% — 2az,c080  27a m:;w (a ) © (4.72)
1 02 — 7"2 1 > Tw il im(6~6u)
- w - = Tl (4.73
v(6) 2na a® + r? — 2ar, cos(0 — 8,,) 2wa m=z_w ( a ) ¢ , (4.73)

and the coefficient ¢,, can be written as

| P Tw fm| T, pm|
-~ by | W —_ . 4.74
cm Ora ( a ) ( a ) ( )

Thus, we reproduce the well-known formula

co | bl /2, Il
LI S S (=) (2)" (4.75)

© 2mak 1 —ipg kK a a

We find our mode classification as the eigenmode of the operator M is identical
to the azimuthal mode in the case of the round pipe. When the particles are at the
origin v, = r,, = 0, u(s) and v(s) are constant and consequently only the mode m =0
contributes. When r; is small, only the modes m = £1 contribute to the transverse
impedance 9F,/0r.,.

Eigenmodes and eigenvalues

Next, let us discuss the modes for elliptic pipes with the horizontal radius e and
vertical b (¢ > b). In this case, the modes can be labeled by the number of nodes of
the eigenfunction, which is, of course, even. We denote half the number of nodes by m.
An example of the eigenfunction is plotted in Fig. 1. For each m > 1, there are two
modes, one even in z and odd in y (sinmé-like) and the other odd in z and even in y
(cos mf-like). The former has the larger eigenvalue if ¢ > b.
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u= 0715 m=0

= 1.422 m—=1

F=0543 m=1

L= 0.831 m=2

= 0.427 m=e

= 0418 m=3

=~ 0340 m=a

[z= 0818 m=4

= 0.088 m=4%

+x Oty

Figure 1: Eigernfunctions
for an elliptic pipe with ra-
dius a/b=2. The horizontal
axis is the circumference of
the cross-section. The left
edge corresponds to the posi-
tive z-axis and the first quar-
ter point to the positive y-
axis, etc., as indicated at the
bottom. The eigenvalue (di-
vided by &) and the mode
identification are indicated at
the top of each graph.

The dependence of the eigenvalue on the ellipticity is shown in Fig. 2. The left edge
corresponds to the round pipe and the right edge two parallel plates. The cosine-like
modes (including m = 0) are plotted in solid lines and the sine-like modes in dashed
lines. One finds that the eigenvalues for lower sine-like modes increase rapidly as the

ellipticity.
T T 1 l T T T T T T I I/l | T T
10.0 Ty ~
F 7 / 1
- s / .
50 | 9"/’ 4 s 4

04 0.6

(a—-b)/(a+b)

Time-dependence of the wake functions

Fig. 3 shows the longitudinal wake functions for r, = r,, = 0 for three cases a/b=1,
2 and oo (b = lem). The horizontal axis is the normalized distance { = z/z with
70 = (b*po)'/? (= 17um for copper). The long-range part is plotted with a magnified
vertical scale on the right. The three cases have almost the same asymptotic behavior
(the dotted line) but the approach to the asymptotic form is slower for flatter pipes,

reflecting the larger eigenvalues of the sine-like modes.
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Figure 2: Eigenvalues (nor-
malized by &) for elliptic pipes as
a function of (a—5&}/(a+4). The
solid lines are cosine-like modes
and the dashed lins sine-like.
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Fig. 4 shows the transverse wake function near the center of elliptic pipes with
b=1cm. The aspect ratio is /b =1, 1.2, 1.5, 2 and infinity as indicated in the figure.
The four graphs are W, /dz,, OW, /8y,, OW, /Dy, and OW, /By, + W, /8y, in units
of 10" V/C/m?. (6W,/dz,, is not plotted here.) The horizontal scale is the same as
in Fig. 3. (Note that OW, /8y, has different vertical scale). One finds that W, /8y,
decreases as a/b increases but 9W,/dy,,, which vanishes for a round pipe, shows an
opposite behavior. The sum W, /dy, + W, /dy,, which is the transverse wake when
the source and the witness particles have the same displacement, is relatively insensitive
to the aspect ratio if b is fixed.

Fig. 5 shows the transverse wake function for a hyperbolic pipe having a shape like
the pole of a quadrupole magnet. The radius at the pole tip is 4 =lecm. (The area is cut
at 2cm but the result is almost independent of the cut if it is larger than 1.5cm.) The
horizontal scale is the same as in Fig. 3. The solid line is W, /8y, for the hyperbolic
pipe. (Near the origin, W is parallel to r, up to the first order of r,. The coefficient
does not depend on the direction. Also note that W, does not have the first order term
of r,.) The dotted line is the asymptotic form (x 1//z). The wake for the round pipe
with radius 1em is plotted in the dashed line for comparison. One finds the wake for the
hyperbolic pipe is condiderably smaller than that for the round pipe in the short-range
region but the difference is only slight in the asymptotic region.

The effects of the AC conductivity on the wake functions are shown in Fig. 6 (lon-
gitudinal wake) and Fig. 7(transverse) for round pipe and parallel plates with b=1cm.
The assumed relaxation time is 7=8.1pm as in [3] so that ¢7/2=0.47. In all these
graphs, the wake functions under DC conductivity are plotted in dashed lines for com-
parison. As was pointed out in [3}, the AC conductivity makes the damping of the wake
slower. The effect is less significant for parallel plates.
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Figure 4: Transverse wake function for elliptic pipes with b=1cm.
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Figure 5:  Transverse
wake function (solid line)
for a hyperbolic pipe with
b=1lcm. The dotted line is
the asymptotic form and
the dashed line is for the
round pipe with radius
lem.
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Figure 6: Longitudinal wake function with the AC conductivity taken into account. (a) round pipe
and (b) parallel plates with b=lcm. The dashed lines are those with DC conductivity.
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Figure 7: Transverse wake function with the AC conductivity taken into account for round pipe (a)
and parallel plates (b,c,d) with b = lecm. (a) and (c) are dW,/8y,, (b) is OW, /By, + OW, /By, and
(d) is OW, /8y, in units of 10'* V/C/m?. The dashed lines are those with DC conductivity.
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Asymptotic form of the wake function

Next, we discuss the asymptotic form which is the most important in application.
The asymptotic form of the longitudinal and transverse wake functions near the center
of a round pipe of radius b are given by

¢Zo\/Po 1 |

= V9 4.76

Wilo) = b 7 (4.76)
an . CZG\/p_O_-L
dr, | m/Tb® Jz

At given r, and r,, in the given beam pipe, the asymptotic form of the wake function
is characterized by one parameter, i.e., the coefficient of 2%/ for Wy, or that of z=1/2
for the derivative of W ;. In the following we shall normalize the coeflicients by those
for the round pipe.

Fig. 8 shows the asymptotic forms for elliptic and rectangular pipes as functions of
(¢ — b)/(a + b). One finds that the curves for Wi, OW,/0z, and OW, /0y, perfectly
agree with those in Figures 1 and 2 in [6]. The aspect ratio a/b larger than ~ 2.5 gives
practically the same results as the limit a/b — oo. The elliptic and rectangular pipes
give almost the same wakes.

The curves for dW,/0z, and dW, /0y, are the contributions of the transverse
shift of the witness particle, which are absent in the case of round pipes. (Actu-
ally, OW, [0z, = —0W, [0y, always holds because E, satisfies the Laplace equation.)
The most interesting quantities when discussing the collimators and the final quads of
linear colliders are the transverse force for r, = r, ie., 0W,/dz, + OW,/0z, and
oW, /0y, + OW,/0y,. One sees that the vertical force for flat pipes is even larger,
though slightly, than in the case of a round pipe tangent at the shorter radius. The
ratio has been found to be x?/8 = 1.234 in the limit of two parallel plates by Henke and
Napoly [2]. One third of this value comes from W, /3y, and the rest from W, /dy,.
On the other hand, the horizontal force goes to zero when the aspect ratio becomes

(4.77)

large. This is physically obvious. If the source and witness particles have the same
horizontal displacement, there is no horizontal force in the limit a/b — co because of
symmetry.

In the case of the hyperbolic pipe, the asymptotic form of the longitudinal wake is
found to be slightly larger (by a factor 1.063) than that of the tangent round pipe and
the transverse wake W, /dy, slightly smaller by a factor 0.835.

Dependence on the witness position

Next, let us discuss the dependence of the transverse asymptotic wake on the location
of the witness particle when the source particle is exactly at the center of the pipe. The
transverse wake is absent in the case of round pipes but this is not true in general.

The vertical asymptotic wake is plotted in Fig. 9 as a function of the vertical position
of the witness particle y,, for rectangular and elliptic pipes. The aspect ratio is indicated
by the line modes as shown in the figure with crosses for the curves for rectangular pipes.
The vertical half aperture b is fixed in all cases. The wake W, is normalized by ngo)
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of (a — b)/(a+ b). The values are normalized by those of the round pipe with radius b.
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Figure 9:  Vertical asymptotic wake vs. the location of the witness particle for rectangular and
elliptic pipes of various aspect ratio with fixed vertical aperture.
defined by
oW,
W =15 [?—y (4.78)
: Ys Jround pipe,r.=o

which is the dipole wake for a round pipe when the source particle is near the pipe wall.
From this figure we find the following facts. Firstly, W, increases as y,, in rectangular
pipes more rapidly than in elliptic pipes. Even for a small aspect ratio a/b=1.1, W,
is almost the same for a/b = 0o when the witness particle is close to the wall. In the
case of the elliptic pipes the wall curvature relaxes the concentration of the wall current
and reduces the wake near the wall. Secondly, the y,, dependence is almost linear for
elliptic pipes if a/6<1.5 but W, is still large near the wall unless a/b is extremely close
to unity. For example, when a/b=1.2, W, is about half of the dipole wake for a round
pipe with y, = b.

These facts strongly suggest that the collimator for linear colliders has to be round.

Fig. 10 is a similar plot for hyperbolic pipe. What is plotted is the transverse
asymptotic wake for ry = 0 with the witness particle along the y-axis (W,) and that
along the 45-degree line (W,.). They are normalized by the same WJO} as in the previous
plot.

Loss parameter for long bunches
Finally, let us confirm our computation of the loss parameter kg for a long bunch,
- €q.(2.60), by comparing with the result by Piwinski [4,5]. Let us denote the distance
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Figure 10: Transverse asymptotic wake for
a hyperbolic pipe for £, on the y-axis (W,)
and on the 45-degree line (W, ).

1 1.5 I3.5
Yw/b ry/b
between the beam and the wall by d = b—y, (0 < y, < b) and consider kz, as a function
of d/b for fixed d. For the case of round pipes and two parallel plates, it has been shown
by Piwinski that kga/s=0) = kr(4/e=1) and that kz, has a weak minimum at d/b = 2—+/2
for round pipes and at d/b = 0.6855 for parallel plates. Fig. 11 shows k;,(d, b) divided
by kr(d,d) as a function of d/b. The solid line is for round pipes to be compared with
Fig. 4a in [4], the dashed line for parallel plates with Fig. 2a in [5], and the dot-dashed
line for elliptic pipes with a/b = 1.5. The first two curves perfectly agree with the
results in [4,5]. One finds an elliptic pipe shows a qualitatively similar dependence as
the other two cases, although kr(ap=0) = kr(asp=1) does not hold exactly.

SR AR SO DR BRI AR A Figure 11:  Loss parameter k; for long
RS bunch with fixed distance d = b — y, between
086 — AN -] the beam and the wall. The horizontal axis is
F N~ 4 d divided by the half aperture & of the pipe.
000 — e ~ / R The loss parameter is normalized by that for
: ~. ~ . - - the beam at the center of a round pipe with

~ .
o6 [~ ~ ] radius b = d.

0-80 [ Il L 1 1 I 1 i I i I 1 Fl 1 i I I 1 1 1 I 'l I 1 'l
0 0.2 04 0.8 0.8 1

(b—y)/b

5 Summary

We have developed a method of computing the resistive wall impedance/wake function
for arbitrary shapes of the pipe crosssection under the conditions that (a) the particle is
ultrarelativistic, (b) the pipe is longitudinally uniform, and (c) the skin depth is smaller
than the typical dimension of the pipe (and than the thickness of the wall material).
The location of the source and witness particles is arbitrary and the short-range effects
due to the reduced phase velocity and to the AC conductivity can be included. In our
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method, the Maxwell equation is solved by using the boundary element method, which
is basically the discretization of the Kirchhoff integral equation. The computer code
is very powerful and is more convenient, except for the round pipe case, than analytic
formulas, even if available.

Among our assumptions, (a) can be relaxed relatively easily by using the Helmholz
equation instead of the Laplace equation. However, (b) is very hard to remove. For the
impedance calculation of resistive and non-uniform pipes, one has to be satisfied with
the simple sum of the geometric impedance and the integral of the resistive impedance
with the assumption of the smooth change of the wall. A related problem is the propa-
gation of the wave in pipes of finite length. Usually, the generated high-frequency wave
can interact with the particle only after travelling over a distance which is typically kL.
In the case of the final quad in linear colliders (1/k ~100pm, L ~1lcm), this distance is
about 1m which can not be ignored. Further investigation is needed for these extreme
problems.

A The self-adjointness of the operators

We prove here that the operators G~!D and M are self-adjoint.
We denote the kernel function of an operator A by Kern[A], i.e.,

(Af)(s) = }( ds' Kern[A](s, s') f(s). (A.79)

Obviously, the self-adjointness of A, A! = A, is equivalent to the symmetry of Kern[Al:
Kern[A](s, s")=Kern[A](s’, s)*. The asterisk denotes complex conjugate, but it is actu-
ally not needed because we treat only real kernels.

The kernel for the product of two operators is given by the convolution of the two
kernels;

Kern[AB](s,s') = j{ ds' Kern[A](s, s")Kern[B](s", s'). (A.80)
First, let us discuss the self-adjointness of G~1'D, which is equivalent to GD' = DG1.

It is obvious that G is self-adjoint, i.e., Gt = G, because G(r, r') = G(r', r). By the
definition of the operator D, we have

Kern[D)(s,5') = 8(s - s') + n - V G(r, 7). (A.81)
Therefore,
Kern[GD'|(s,s') = G(r,¢) + fds”G’(r, v} [n" VI G(¥", )],

Kern[DG'(s,s') = G(r,7') + f ds” [n” - V9G(r, #")] G(2", ¥"),
(A.82)
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from which we obtain

Kern[gD' — DGY = ¢ ds"n" . [G(r, r")VIG(¢", ¥') — V1 C(r, ¥ )G(r", ")}

= /er”V'i -[G(r, #" )V G(#", ¢") = VI G(r, ¥")G(r", )]
— /ﬂ dr' [G(r, ¥ YA G(r", ') — AL G(r, ¥ )G(r", ¥')]

[ ar"=Gr,re(r" = 1) + 6(r — r")G(r",#')
=0,

where [o dr” is the integral over the crossection 2. We have made use of the fact that
G(r, r') satisfies the Laplace equation (2.6). Thus, G™'D is self-adjoint.
Next, let us discuss M. Eqgs.(2.15) and (2.16) can be written in the form

N T [ £ ) L cC § |E.,)
(27 ) )= (5 8 ) (i) oo
The upper left component of the operator
c S\ (N T
(_S C) (_T N) (A.81)

is equal to M™1. Therefore, it is sufficient to prove the self-adjointness of the above
operator, or, equivalently, of the operator

(5 1)(59)
Since it is obvious by definition that Ct = C and St = —§, it suffices to prove
(N +4iT)C +18) = (C+iS)NT —4iTH). (A.86)
Since
Kern[C +iS] = (m+i7)-n'G(s,8) = (n' ~1i7") - n G(s,5')
Kern[N + 7] = §(s — ') + (n +1i71) - V' G(s, ),
Kern[M —iT1 = §(s —s") + (0’ —i7") - VLG (s,d), (A.87)
we find
Kern[(NV +iT)C +i8) — (C +iS)(N'T —iTH)] - (A.88)

= fds”[v V1 G(s,8M 0™ - a"G(s",s") — v - 8"G(s,s")v™ - V] G(s", s")]
= fds”n" v VIG(s,sMv™*G(s", ") — vG(s,s") 0™ - V| G(s",s")]

= fdr”V'j_ (o - V[ G(s,s")0"*G(s",s') — vG(s,s") ™ - VI G(5",3")]

= fdr” > wi[d70{G(s,s") - G(s",s') — G(s,s")B] D] G(s", ),

1 =T,y
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where v = n +¢7. Since vy, = ny +17y, = —7; +in; = g, Vv, and v,v," cancell each
other and vyv,* = v,vy = v+ n'. Thus, we find the above expression is equal to

fdﬂv-nmﬁﬂﬂgsﬂ-G@ﬂsynG@JﬂAﬂG@ﬂﬁﬂ:0. (A.89)

Thus, M is self-adjoint.

B Basic Wake Functions

Basic wake functions f;, and fr

We define the dimensionless functions fr({) and fr({) as

_]_ Foo . e:':ri/‘;(iw)l/z
_ —w¢
fu(() = 471_/ dwe T Tetm /i 2w/ (B.90)
1 00 ) e:}:ri/ﬂl(:}:w)—l/‘z :
_ —1w(
fT(C) - E ./_00 dwe- 1 — %eiri/4(:}:W)3/2’ (B-g].)

where + is the sign of w. They have the relation

f2l6) = | " RO (B.92)

The normalization is chosen such that fr(0,) = —1. These functions are plotted in
Fig. 12 together with the asymptotic forms for large ¢

fL (g) 4\/—(-3/2 ’ (B'93)
Fr(Q) ~ \/W—C (B.94)

As can be seen in this figure, the approach to the asymptotic forms is fairly slow.
The deviation is sizable even at { ~ 9 (longitudinal) and ~ 4 (transverse). For the
transverse function, however, we may in practice use the asymptotic form down to a
much smaller value of , say ~ 1, because of the following accidental relation

/00 [fT ] d¢ = 0. (B.95)

The longitudinal and the transverse (per unit displacement of the source particle)
wake functions for a round pipe with radius ¢ per unit pipe length are given by

Wi(z) = ﬁfL(z/zl), (B.96)
%Z (2) = ;:_ﬁzzlfT(z/zl) z1 = (a?po)'/°. (B.97)
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Figure 12: The basic wake functions fz (solid) and fp (dashed) and their asymptotic forms (dotted)
defined in eqs.(B.93) and (B.94). The large { region is plotted in logarithmic scale too (scale on the
right).

The Taylor expansions at the origin are

fi{() =~ 2 ﬁg"})z——%c%/z (0 < ¢ < o0) (B.98)
ZD (3?/? T30 (0= <o), (B.99)

For large ¢, we have asymptotic expansions

F5(0) = —5e72 " cos (ﬁc) PR [1 + fj (=1)"T(3n + 3/2)] (B.100)

3 275 4ﬁc3/2 & TG
4/3 —1/3 RI‘ n
fT(C)=_2§_6"2 " con (2\/1;'“ ) [ Zl( ;(1/234“44—3}*/2)]’ (B.100)

although they do not converge. The series in the square brackets can be rewritten in
the form of continued fractions like

(B.102)



The coefficients ¢y, ¢z, - - - cannot be expressed in analytic forms but can be computed
numerically. These continued fractions converge and, together with the Taylor expan-
sions (B.98) and {B.99), allow one to compute f.(() and fr(() for any ¢.
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Figure 13: The functions fz(¢,T") (top) and fr(¢,T) (bottom) as functions of ¢ for [=0 and 3 (solid
lines) and for the values in between with step 0.5 (dashed lines).

Wake functions under AC conductivity

The basic wake functions with AC conductivity are denoted by fr.(¢,I") and fr{{,T).
They are defined by eqs.(B.90) and (B.91) with ‘1’ in the denominator replaced with
(1 Filw) 2. An integral representation more convenient for numerical integration is
found by changing the integration contour to the imaginary axis. The result is

1 _ 1 e (1 +I‘y2)2 a2 2
MN= R = om0l = d ¢y /(14Ty%) B.1
r(6T) = =R 4 2, W 1 » (B103)

where cq is the complex root of the quartic equation I'ci — ¢3 —4 = 0 in the first quadrant

and is given explicitly by
VL i1+ e (B.104)
Vel +3a™)

a = %[(\/1 +T3+ )Y — (1+T5 1%, (I =2"31/3)
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-1
- [pl A THTR LT +4/1 1 r;r)-m] . (B.105)

The expressions for f7((,T') are easily found from the relation f; = —dfy/d(.

Loss parameter function g,
The basic function gy, for the loss parameter of Gaussian bunches is defined by

oo 2.2 e i/ W 1/2 o?
Q‘L(J)Zi'./-l. dwe Y ¥ (:I: ) _ f f (C)exp( C/4 )

o1 Jooo “° 1 — ledmifa(4w)3/2 — VTo
(B.106)
It is normalized as g;,(0) = 1 and has the asymptotic form for large o
1
1(3/4) (o> 1). (B.107)

gb(a) ~ 2\/571' a3/’

The function g, is plotied in Fig. 14 by the solid line together with the asymptotic
form (B.107) by the dashed line. One finds that the asymptotic form can be used even
down to ¢ ~ 1. The Taylor expansion and the asymptotic expansion are

- (=2) /2 — - nw (3n) I 3
sin — [ — g2 B.108
EI‘(%/‘L*‘U 7;1 4 4/ 2n ( : )
1.00 F Ty ' T TT ] =TT ] LI l T F TT
0.60 \\ Figure 14:  Function gz(o) (solid line)
\ 4 and its asymptotic form (dashed line) given
N ; in eq.(B.107).
N\
~
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