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I. Introduction

It has been established by many studies that transverse fast

instabilities, which have been observed in large electron storage

rings such as PEIRAl) and PEPZ). are explained by coupling of

coherent modes in phase space. Both analytical nmthodsa'A)
4.5)

starting
with the Vlasov equation and computer simulations give good
agreement with experimental results if the appropriate transverse
impedance is known. On the contrary, such a fast transverse
instability has so far not been normally observed in proton rings. For
_ example, the tune shift Avo of the 1lowest head-tail mode m = o
at SPS is about S5 times bigger than the synchrotron tune v but
no fast instability has been observed to Occurﬁ). Even if it is
unreasonable to simply apply the empirical rule of thumb
Avo~vs to determine the threshold, it seems to be hard to
think that no two modes cross anywhere. A major difference between a
proton and an electron beam is in the bunch length; that is, a proton
bunch is usually much longer than an electron buach. Therefore, the
bunch length may be the reason why the mode-coupling instability does

not occur in proton beams.

However, there is another puzzle. In the process to solve the
Vliasov equation, we introduce "higher radial modes™ in addition to
wsual "azimuthal modes" (which depends on the model of the particle
distribution function assumed. For example, only azimuthal modes
appear in a hollow-beam modely)). The infinite number of higher
radial modes is degenerate for the tune vg * mv_ (vB =
betatron tune, m = integer) at zero beam intensity. As the intensity
increases, the degeneracy is removed, and the modes cluster near
- The frequencies are so close to each other that it seems to
be easy for them to couple. If so, that coupling would give a much
lower threshold than two modes with different azimuthal mode numbers.
However, experimental observation and computer simulation show that it

is not true.



One may draw a conclusion from this, that higher radial modes are
harmless in the sense that they cannot couple at all. On the other
hand, the author's analysis of mode-coupling instabilities at TRISTAN
ring showed that the second lowest radial mode for m = o can couple
the m = 1 mode with the lowest radial mode {(figure 2 in Ref. 3). The
consideration above implies that there exists a "selection rule” for a

possible pair of couplings.

The main purpose of the present paper is to show why a
mode-coupling instability has not been observed at SPS. We will start
with formulating a mode-coupling theory for a Gaussian bunch as =
"pure matrix eigenvalue problem” in Sec. II. The method of derivation
is well established; however, the formalism used by the author
together with Satoch or by Besnier-Brand-Zotter results in a
formulation which requires finding the zeroes of an infinite
determinant. This is, not only difficult for numerical calculation,
but also makes insight inte the mechanism of coupling of two modes
difficult. The present formalism has the advantage that it is easy to
see, from the structure of the eigen matrix, how an arbitrary pair of
modes affect each other. We shall derive a selection rule from this
matrix argument in Sec. III. Comparison of numerical calculations
with the experimental results at SPS for 26 GeV and 315 GeV will be
done in Sec. IV. Furthermore, the stability limit for beam intensity
at SPS as LEP injectiong) is discussed in Sec. V. Our conclusions

are given in Sec. VI.

II. Mode—coupling theory

In this section, we derive a formalism for mode-coupling theory
ag a "pure eigenvalue problem"”. Although transverse instabilities are
concerned, it 1is necessary to take into consideration both the
transverse and the longitudinal phase spaces. The particle
distribution function Py{u, du/dr, a, de/sdx) satisfies the

Vlasov equation
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where u is the transverse displacement from the beam axis normalized by

the square root of the beta-function Bz {(z = x,¥)

p= —2— (2.2)

Jﬂz(s>

and © is the longitudinal angular position with respect to the bunch

center. The independent variable is the quasi time < defined by

(2.3)

where wg ijs the angular betatron frequency.

A dot means taking derivative with respect to . The evolution of

is governed by equations of motion of a single particle

LM
i
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;:; + (wB a woe Y = z g Bz . (2.4)
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498 . ,% = o, (2.5)
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where Fz is the transverse wake force generated by the dipole moment of
a beam. We disregard the 1longitudinal wake force acting on the
longitudinal motion of a particle, which is usually treated separately in
the study of longitudinal instabilities. A longitudinal force is also
generated by the transverse dipole moment, but it is so small that we
neglect it as we1117). The prime on © denotes differentiation with

respect to BL, the angular position around a ring, i.e. BL = s/R,



where R is the average radius of s ring. The term wE = § uoe'/u
represents the fact that the betatron frequency depends on the momentum
through the chromaticity §. The other symbols are: W, o= (%1)

is the angular revolution frequency, a is the momentum compaction
factor, £ is the beam energy, w, is the synchrotron oscillation

angular frequency.

We then transform the longitudinal and the transverse coordinates

into polar coordinates defined by
u = rz cosB ¢z’

du _ .
d = (mB mg)rz sin dz,

@ =r co8  ,

49 .
e = "9 T sin ¢ . (2.6)

With these transformations, the Vliasov equation (2.1) becomes

2y _E gy W, M, -z 2.3/2% _
3t (wB a woe ) a¢: @, 2 +E 9 Bz " =0 . (2.7

Here we change the independent variable from =t teo aL, for
it is at a fixed locatiom in a ring that the dipole curreat is
observed and hence it is more convenient to think in the frequency
domain with respect to eL, instead of <t which had a merit to

make the description of equations of motion simpler.

Using the relation

)
' (2.8)
aeL



we get

mO%‘etafch-imoe')g:: +ms§+§z—s':auowsﬂ_‘=o. (2.9)
L z ol
In this expression, we have averaged B;l over the ring except
in the last term which stands for the source term of the tranrsverse
force. In general wake forces Fz are generated at localized places, and
one should take Bz at those points in order to express properly how

much they act back to the beam.

If the perturbation to the beam is small, we can decompose the
distribution Ffunction ¢ into an unperturbed part, which is a function

of r and r, only, and a perturbed part

o
¢ = fo(rz) go(r) + f (rz’ ¢z) gi{r,¢) e R (2.10)

where @ 1is the mode frequency tc be determined, and exp(i§0/a) is
the head-tail phase factor. Substituzing Eq. (2.10) into the Vlasov eq.
(2.9), and linearizing it with ressect to the perturbation terms, we

obtain

-i 2 e + 1 5 o
. af ¢ 2 w, L @
[-;Qfg + wg a¢zg + w 2 le
(2.11;
F, df
-z B, Rw_ sin¢ 7— g = 0

Let us now consider the transvarse force Fz. The dipole current

observed at location OL as as functic- of & is written as
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where p(8) is the longitudinal charge distribution:

p(®) = [T g (r,4)d0 (2.13)

and D is the transverse dipole moment:

JJut(r &) rdr_ do

. T2 "% T T —
D = fBz II fF(r) r dr_ do = fBz Dn . (2.14)
o'z’ Tz %z %

We want to express the dipole current as & signal in time which the
impedance or the wake function picks up. Including multipcle passage
effects and going to the fregquency domain with Fourier transform of
p(0)

? (p) o I e-lpep(e) de

w .
< £ I o~1Pr cos ¢ g(r, ¢) rd rde , (2.15)
27
we have the dipole current as
~i{p + 8"‘*)m t
= S - Q@ “a °
w, v8 D P-Z_-mp(9+;:—°)e. . {2.16)

The transverse force Fz felt at a location © is thus
expressed by
. . e
-i eL i{p + ° ) 6

2 } e
W

ie =
F g~ fBz Dne

_ L]
z  2wR o

~ f
g {p + o ~a ) z.I (p +

-}
o

(2.17)



with the transverse impedance ZT(p + %") at frequency w = pw_+ Q

The symbol e means the elementary charge. Inserting Eq. (2.17) into Eg.

(2.11), we obtain

iE -2,
[-iefg + 3t + £ % le * %
1eLg + g a¢zg “st 3¢
D8 . df
_ D2 7] £k ipo s -
iT /e © 2 zr(p + =) p(p+ o " o ) e g, sin ¢, o = 0.
P o o z
(2.18)
Here we expand sin ¢z with exp(i¢z) and exp(—i¢z).
If the mode frequency shifts are small compared to wgs We can
ignore the exp(i¢z) term. The solution for f is easily found:
dfo
£f = - Dn E;; exp(1¢z) . {2.19)
The Vlasov equation then reduces to __
itp+2_5) 0
. 3 B2 Q. ~ Q E “s %o
[-i(Q -~ wB) + o 2% 1g+ 1B /e g ZT(P + ”o) p (p + o - Ye
{2.20)

Since g(r,¢} has tolbe pericdic in ¢ with period 2w, we can expand it
as

I
i

5m(r> exp(img), {(2.21)

s
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where m is the azimuthal mode number.

Subgtituting Eq. (2.21) into Eq. (2.20), and integrating over ¢ after
multiplying by exp(-im¢) on both sides, we get

B9y Q .~ Q E
(- meg(e) = =l T rgreag, L IR ) o B - )
;m @ X
X i Jm((p Y T a ) r), (2.22)
o
where
Q- w
A= — 8 . (2.23)
)
3
In obtaining Eq. (2.22), we have used the formulag)
fz" olPF €08 & = Wby, _ 2gi® J_(pr) (2.24)

Using the same formula, one gets

g‘):w

plp + e _
PP Y e T a 8
o n

i 38

e R
i Io gn(r) I ((p + o - G)r) rdr. (2.25)

-}

Inserting Eq. (2.25) into Eq. (2.22), we obtain an equation for gm

B w
_ .y 2.9 R, .m  _k
{k—m)gm(r} = -i oreo &, E ZT(P + uo) i Jm((p + o " a ) )
: e s~ ™ ' g-... E. ' '
X @ i Io 8, (') Jn((p + - q)r dr'de' (2.26)
n= —= o

which is Sacherer's integral equation including mode coupling. (Note the

summation about n).



We solve Eg. (2.26) by expanding gm(r) in orthogonal functions.
Looking at Eq. (2.26) carefully, we notice that the functional dependence

of gm(r) is the same for positive and negative m, i.e.

(h - m)gm(r) = {\ + m)g_m(r) . (2.27)

This implies that we can expand g (r) with the same orthogonal

functions for positive and negstive m asniO)

s [m])
g () =wir) § a®™g B0y (2.28)
m K =0 k k

The weight function w(r) is proportional to the unperturbed

distribution function

wi(r) =¢C go(r) {2.29)

f(lml)

and the functions X

(r) satisfy the following orthogonal

relations

® (Im}) (im]) N
Io wir) fk (r) f! (r) rvdr = 6k2' (2.30)
Insertion of Eq. (2.28) into Eq. (2.26) leads to
@ B w
(m) (im]) _ s _zo , wr)
(A - mw{r) % L fk (e) = - 1 02 = s
k=20
e, .;m g &
X I Zy (p + ) 1 Jm((p o T a )r)
P o o
i T (] Q
x 3 i [Pwey I eVt Do 7 (p+ & - Eyenrrer ar
o 4 2 n w a
N=— L =0 o

(2.31)
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Multiply fiiml)(r) and integrate Eg. {2.31), and we finally

get the matrix eigenvalue equation

o L -]
o -ma™ 2 3 5 L (2.32)
'S nt %
ns=- 1 =0
where
. @ mn e & g _ L
Hmk- ik } Zr(p + % )i Imk(p * o "o ) Inl(p + q) .
n P o o )
{2.33)
® £, @ (Im]) 2 _F
TP+ o -3 )= Io wir) £ (r) I (p + o - J)riedr,
(2.34)
and
K = B2% ) (2.35)
T 2TE/e C
The non-trivial solutions of Eg. (2.32) for aim) require that
det (AI - A) =0, (2.36)
where I is a unit matrix, and A is the matrix with elements
mik
Ay =mé_ 8., + u:: . (2.37)

Equation (2.36) is a "“pure matrix eigenvalue equation" of A. This
form is very convenient for numerical calculations. The "interaction

matrix" M has the following characteristics:

- mk
Mo =M= uﬁt (2.38)

and

m-n _nd
uﬁf = (-1) w (2.39)
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It remains to f£ind appropriate orthogonal functions. The
normalization factor C and the orthogonal functions depend on the
unperturbed distribution function assumed, so to proceed further, we

assume a Gaussian distribution

go(r) = Ne e 20 . (2.40)

2
Irw o
8

where N is the number of particles per bunch and ¢ is the bunch length
in © unit (= az/R). After some easy considerations, we notice that
the normalization factor C c¢an be arbitrarily chosen, namely, & different

(|ml>

choice of C leads only to change of the definition of £ X (r). To get a

simple expression, we chose

21&5
C = Ne {2.41)
and then 9
% |m] 2
(|m]) _ k! r_ (|m}), ¢
fk (e} = (?TET_:_iST) (Jﬁa) L X (;;;) ’ (2.42)
and where L;]ml) is the generalized ' Laguerre
pelynomials.
The function Imk(p') becomes
< o im|+2k .
Tn(P') = Tl s ore (/7 exp(~ (92—"-2-) , (2.43)
where
e =1 form > 0

(-l)m form < O
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The apparent form of the scaling factor K is

‘- Neﬁzwo
'4«ImsE/e . (2.44)

III. Selection Rule

Information about a selection rule is contained in the structure of
the matrix M. Two arbitrary modes, each of which is specified only by
the azimuthal mode number m and the radial mode number k at zero beam
intensity, come to have the other party's component through the
"interaction matrix M" at a finite intensity. Let us 1imit the discussion
to the 2 X 2 matrix containing the modes concerned. Besides, we
continue our discussion with a Gaussian distribution, without losing any

essentials. Supposing a broad-band impedance, the matrix element can be
approximated as

[- -]
. =N
Hﬁ: = - ik ) ZI(P) i Imk(po) Ing(pd)
p= -
oen ey e, oglmlvinle20een) s 3
= - iK } ZT(p) i — (3; exp(-p ¢”)
P Y{im{+k)tk! Y(|n|+2)10!
(3.1)

The real and imaginary parts of the impedance are an odd and an even
function of the frequency pmo, respectively. Therefore, in the_”case
that m and n have the same polarity (i.e. m-n = even), only the imaginary
part of the impedance is left after summation over p. In the opposite
case, {m-—n = odd), only the reél part remains. All the matrix elements
are real quantities. It should bg noted that the radial mode number k and
L play no role in this polaritq discussion; they always contribute to

summation as even functiomns, since they are multiplied by a factor 2.
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First, we consider the case of m-n = odd. Iwo mode frequencies are

given by the determinant of the 2 X 2 matrix:

A—-m -~ Hmk - Hmk

mk nt =0 . (3.2)
L ni
- H:k A-mo- Hni
The solutions are
i nf
l1’2= 2 (m + H:E +n 4+ M 2)
1/ WK nt .2 ‘
+ = /{m + -n-¥ )T - 4 '
2 mk nf nl (3.3)
where H;; has been replaced by - Hﬁt. When two values, m +

Hﬁi and n + Hﬁi, get very close, the term under the
square root can become negative, and the two solutions become complex
conjugate. The physical meaﬁing of what happens is that the two modes
cross, and they become unstable (one of which becomes stable), that is, a
mode—coupling instability happens. The case of m-n = even can be treated

in the same way; the difference 1is that Hn! should be replaced by

k.
Hgt. The conclusion, however, becomes just opposite. The
solutions are
1 nf
*1,2‘ 2 (m + H:t 4+ n + nnl)
1 ng .2 2

(3.4)

The inside of the square root is always positive; the two modes have

different frequencies and never cross.

When the solutions are shown graphically, the difference of

behaviour of mode frequencies in the two cases is seen more clearly.
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Figure 1(a) and (b) show these results as a function of the scaling
factor K. In this example, numerical values of the matrix elements are
taken as follows: Hn?:k = - 2K ’ HI:: =. 53K, H:::: = 0,
As is evident from the figures, the case of m-n = odd, Fig. 1 {a)
shows that the two modes attract each other to merge, while in the
case of m-n = even, they repel each other; the upper mode poing down

is bent to the right when it approaches the lower mode.

We should pay special attention %to the interpretation of the
latter case. The mode starting from N = m is repelled also from the
infinite number of other higher radial modes at the A = n line. One
may ask then if that mode cannot exceed the line A = n. The answer
is yes. In order to see it, we must investigate the behaviour of the

eigenvectors corresponding to the eigen values (3.4). They are;

a’(m)

k } 1 nk
{(n) 2 2 “mk
a'y 1,2 1/5""‘ £ O z”“‘”mkmk’ L B

nf .
( 3.5)
The amplitudes are normalized %to unity. Figure Z shows plots of numerical
values. Each mode which starts with one side's component loses its
original component and comes to contain the other side's as the intensity
increases. Around the point where the eigenvalues are bent, the ratioc of
two components is exchanged. Tt might be meaningless to assign a mode
number to each eigen solution, because there exists no "pure" mode any
more; however, if we make a rule to define a mode in terms of the
azimuthal and the radial mode number corresponding to the expansion
function which has the largest expansion coefficient in the eigenvector,
we should regard that the mode starting A = m continues to the mode
going down below the N = n line. This rule is, of course, useless for

many situations vague to judge.
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From the experimental point of view, the following statement can be
made. Let us explain by a concrete example and schematical figures. The
tune shift of the lowest head-tail mode m = 0 is normally much bigger
than that of m = -2 mode, (which depends on impedance). Forget the m = -1
mode between them as harmless here. Spectra of a beam when kicked
transversely looks like PFig. 3(a) at low intensity. As the intensity
increases, the tune of m = 0 mode shifts down, and the m= -2 mode is
enhanced due to a mixture of the rigid dipole oscillation, see Fig. 3(b).
The intensity increasing further, the signal of the left hand side starts
to move largely, while the right signal, which was dipole mode so far,
stops moving around the frequency w = wg - zms, as shown in
Fig. 3(¢). The heights of the signals are reversed at the same tinme,
because the left mode contains the component of the rigid dipole
oscillation at most; in other words, it is more enhanced by a dipole
kiek. It is this left signal that is experimentally observed and assigned

as continuation of the dipole mode.

In the particular case of m = n, we can draw an interesting
conclusion on higher radial modes. Since the radial mode numbers play no
role in the matter, we can exactly follow the argument mentioned above
for all pairs of k and %. It is therefore concluded that radial modes

starting from the same mode frequency cannot couple tc each other.

What is stated so far is valid for whatever impedance of a machine.
If the real part of the impedance Re(ZI) is small at low frequency, as
e.g. for a widely used broad-band resonator model, the behaviour of mode
coupling is different for long and short bunches. The interaction matrix
M consists of the product of the impedance and the bunch spectrum

(po) (po). They look 1like Fig. 4(a) for the m-n = odd

Imk In!

case in a short bunch. The overlap between Re(ZT) and (po)

ok
Ing(pc) is not so small that the off-diagonal matrix elements are

negligible. The two modes can strongly couple through them.
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As the bunch length gets longer, the bunch spectrum shifts to the low
frequency part, and the overlap with Re(ZI) becomes smaller, see Fig.
4(b). In the 1limit of the =zero-overlap, the matrix Eq. (3.2) is
diagonalized, and the two modes behave independently as shown in Fig.
5(a). When the off-diagonal terms are small but not zero, the two modes,
which are coupled at a certain beam intensity, becomes uncoupled at
slightly higher intensity*. (Fig. 5(b)). The growth rate of the
instability does not become very large for such a weak coupling. If the
spread of the betatron or the synchrotron frequency is big enough, this
slow instability will be suppressed by Landau damping. This implies that
mode-coupling instabilities are difficult to observe experimentally in

long proton bunches, although they may occur in a qualitstive sense.

In the case of m-n = even, this phenomenoclogical change does not
heppen, for the off-diagonal terms contain the imaginary part of the
impedance just as the diagonal terms. Even if the bunch lengthens very
much, there is still a finite inductive impedance in the low frequency

part so that these terms do not vanish.

In the next section, we shall apply these experiences to the SPS as a
concrete example.

IV. Verification of experimental observation at SPS

We start with reviewing some experimental facts at 8SPS. The first

estimate of the SPS transverse impedance was obtained by Boussard and

GareyteIZ) from the measurements of the head-tail instability growth
rates for mode m = 0 at 270 GeV, With & broad-band resonator model and
Sacherer's formula (67) in Ref. 13, the result gives 2. = 18 MQ/m at

T
the resonance peak (1,3 GHz) and Q = 1. It was, however, pointed out13)
that this impedance yields a discrepency in the tune shift measured at 26
GeV; the tune shift evsluated with the same formula is -~ 0.014 at Np =

10" whereas measurements gave -0.03.

* This short period of coupling can ben seen also in Ruggiero's

snalysis ) where it is expressed as a gap where no stationary solution
is found.



- 17 -

More recently, the impedance was estimated by Linnecar and
15)
Scandale
same m = O mode at 315 GeV. The new value was ZT = 47.7 MQ/m, fr =
1.3 GHz, and Q = 1.

from the measurements of the head-tail tune shift for the

The first method is strongly model dependent. In additiom, it is
difficult to estimate the reduction of the growth rate by Landau damping
quantitatively. The second method is more direct, and automatically gives
& correct tune shift at 315 GeV. We therefore use the value ZI = 47.7
MQ/m from the second experiment, and see whether the mode-coupling

theory explains the observational results at 26 GeV.

However, before going to 26 GeV, let us study mode freguencies at 315
GeV. Figure 6{(a) and (b) show the results of numerical calculations using
Eq. (2.36) and the matrix (2.33). The real part of the eigenvalues,
Re{A), and the growth rates +* are plotted versus the number of
particles Np in a bunch. The parasmeters used in this calculation are
listed in the first column of Table I. Seven azimuthal ({m| < 3} and
three radial (k ¢ 2) modes are included. The number Np in Linnecar and
Scandale's experiment was 7,72 X 10*°., wWe can read from the figure
that the corresponding tune shift for the lowest azimuthal and radial
mode is -3.0 X 10_3. which 1is 1in reasonable agreement with the
measurement value - 2.65 X 10”%, This should not be taken for
granted, because the impedance was determined using the fofmula 12)

derived with a different model and through the rough method to solve the
integral eq. (2.26). (The formula itself is not rough!)

in normal operation, Np is about 1.6 X 1011/bunch. so it
turns out that this working point is just below the threshold given by
the first non-negligible coupling between m = O and m = - 1 modes. The
bunch length at this beam intensity is, however, determined by

16). If we increase the

longitudinal micro-wave instabilities.
intensity, the bunch lengthens, thus leading to higher threshold value.
As a consequence, it might be difficult to bring the beam intensity onto

the threshold.
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The results of calculations at 26 GeV are shown in Fig. 7(a) and (b)
for Re(A\) and the growth rate 1-1, respectively. In order to see
the behaviour of mode frequencies clearly, only the lowest radial mode is
included, but the resuylt is almost the same when more radial modes are
included. The parameters used are listed in the second column of Table I.
As mentioned in Sect., III, we can see the repulsion between modes with
the same polarity. Coupling of modes with different polarity is so weak
that it is broken before the growth rates increase considerably. The
incoherent betatron tune spread due to the space charge effect is as big
as 0.05 at 26 GeVa). If we assume that Landau damping compensates
growth rates up to the value corresponding to this spread, i.e. 1.4 X
loa/sec, these weak mode-coupling instabilities will be suppressed

and cannct be seen.

What should be noticed here is, that there is an interrupted line
running from the top left to the lower right in Pig. 7(a). In fact,
inspection of the eigenvector proves that the dipole mode moves actually
along this line. The wvalue Re(A) for the dipole mode at Np = 10*?
is - 5.3, which corresponds to a tune shift wvalue of -0.029. This agrees

very well with the experimental value of —0.0317).

These results thus give a very plausible explanation why the
mode-coupling instability has not been observed at SPS.

V. Stabilitvy limit as LEP injector

Finally, we examine the stability limit at SPS when operated as LEP
InjectorS). A similar analysis was done by Zotterls) where ZT = 18
MY)/m was used as transverse impedance. Proposed beam parameters are
summarized in the last column of Table I. At 3.5 GeV, the synchrotron
radiation damping time is about 9 sec., so electrons behave more 1like
protons. Figure 8 (a) and (b) show Re{(ik) and the growth rate <t
at az = 16 cm, respectively. Seven azimuthal modes and three radial

modes are included in the calculation. The first coupling is seen to
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occur between the lowest radial m = 0 and m = -1 modes. If this coupling

would define the threshold for stability, the beam intensity would be
limited to N_ = 0.44 X 1010, which is half the proposed value

Np = 0.81 X 101°.8) There is some hope that the instability may

be suppressed by the betatron tune spread of -~ 0.01 19) due to
octupole components in the quadrupole magnets*. Nevertheless, damping due
to increasing positive chromaticity, which gives a damping time 4.4 msec
19), should counteract this instability. 1In that case, the next
coupling occurs between the m = -2 and m = -3 modes. This results in a
much bigger growth rate and therefore defines the threshold. However, its
value of NP = 0.7 x 10*° is still below the designed one. Even if
we change the bunch length, fixing the phase space aresa like in protons,
the threshold is not improved sufficiently, (see Fig. 9). One way to
avoid this limitatién would be to reduce the aumber of particles in a

bunch by doubling the injection cycles.

VI. Conclusions

We have seen that the transverse mode-coupling theory derived in the
present study explains the experimental results at SPS very well. The
problem is formulated a pure matrix eigenvalue problem which has several
advantages such as convenience im numerical calculations., The largest
advantage is that coﬁsiderations about the structure of the matrix
provide us with the selectior rule for which pair of modes will be
coupled. It is also found that, even if two modes cross for & long bunch,
their coupling may be so weak that a slight increase in beam intensity
will decouple them. The growth rates may thus stay within the range

compensated by Landau damping or other damping mechanism.

* This is a dangerous game. If we apply the rule-of-thumb criterion for
stability13)
frequency shift], since the real part of the tune shift is already as

| spread in betatron frequencies| > |coherent

big as -0.018, i.e. the coherent frequency will be shifted out of the

incoherent band -0.01, we might not be able to expect Landau damping.
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The calculations for the SPS lesd to some suggestions:

- When the BSPS 1is operated as LEP injector for proposed beam
parameters, the threshold beam intensity is below the planned value. The

injection cycles should therefore be doubled for safety.

- For ppbar operation at 415 GeV, the threshold beam intensity is close
to the intensity in normal operation. If some objects are installed which
enhance only the transverse impedance without contributing substantially
the longitudinal impedance s0 that the bunch does not lengthen, it may be
possible to observe the mode-coupling instability at the SPS already with

present beam intensities.
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Table I

Parameters for SPS at various energy

Q W <

-

beam energy (GeV) 315 26
synchrotron tune . 005 .0055
average beta-function (m) 40 40
bunch length {cm) 18 30

3.5

.013

41.4
16
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Fig. 1. Eigenvalues as a function of K for the case (a) m - n =

odd and (b)) m - a = even,
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Fig. 2. Eigenvectors for the case (b) m - n = even in Fig. 1.



- 26 -

g
I
| |
W -2 W
3 P
| |
W-20
g P s wﬁ
l |
- 20
e %
Fig. 3. Sketches of spectra of dipole oscillation for various

beam intensities.



- 27 -

3

mk Inl
T
L
Frequency
Imag.
b Z
- , ‘T Real.
-
Frequency

Fig. 4,

Broad-band

frequency for (a) a short bunch, (b) a long bunch.

impedance

and

some bunch spectra versus



- 28 =

aJ T
m
n.
0 = Beam
Intensity
b A
m
Real.
n
0 Beam
Intensity
Fig. 5. Mode frequencies when off-diagonal elements are

{a) zero and (b) small.



0t

oLx

K14

‘9393 Yymoad (q) 33ed 182y (%)
*(ud g1 = ub;ow C1E 3¢ younq
v u} se{d21jaed jJo Jsqunu Y3 InFIIA gejouanbaa) apol

0lx
8 0 o 4z

‘9 914

| T T T

008~ | o

-1 009—

-+ 009~

4 002-

),

-1 002

(335) .2

{ 004

- 009

<4 009

(N} 9Y



239 Ymoag (q) jaed 1esy (®)
z
‘(W2 0E = ©) A®D 92 e younq
% ur #ays2133ed Jo Jaqunu aYy) sSnsIaa gajousnboay opoR AR AT

- 30 -

0l x N
ot u ) Y

D
D

0001~
0SL-
005

05Z~

2

05¢

(.93S) .

009

0SL

0001

(¥)ay



238l y3amoan (q) 3aed [vey (v)
(W 91 =
uov A9 C°'C 39 Jojoefuy Jdu 8y pajvaedo ueym younq

v u} ee[oy3asd jJo Jequnu a3 sgnsaea sayousnbaij apol ‘g ‘4
oL °N | S 1L °N
Al 8'0 ¥0 0 Al 8'0 10 0
¥ Ll 1 1 COQ' 1 t
- 009 -
- 00%-
-

- 00C -

L]
(,93S) .2
T

- 002

-1 00%

|

~ 009

- 008

(Y)Y



- 32 -

10
x10 llp
1,0 T T ] T
o -
~
\\-
‘""-.,_. proposed value
and '."‘5“ -
0.5 7]
0 1 1 1 | — q;
12 14 16 18 20
(cm)
Fig.9 Threshold beam intensity when operated as LEP injector

for ZI = 47.7 mk/m. The solid and the broken line
show the thresholds due to coupling between m = O and
m = -1 modes, and between m = -2 and m = -3 modes,

respectively,
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