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Abstract
Overview of frequency domain measurement techniques of the complex
permittivity at microwave frequencies is presented. The methods are divided
into two categories: resonant and non-resonant ones. In the first category
several methods are discussed such as cavity resonator techniques, dielectric
resonator techniques, open resonator techniques and resonators for
non-destructive testing. The general theory of measurements of different
materials in resonant structures is presented showing mathematical
background, sources of uncertainties and theoretical and experimental
limits. Methods of measurement of anisotropic materials are presented. In
the second category, transmission–reflection techniques are overviewed
including transmission line cells as well as free-space techniques.

Keywords: frequency domain measurements, microwave measurements,
permittivity, permeability, dielectric losses, magnetic losses

1. Introduction

One of the most widely known books on dielectric
measurement is that of Von Hippel [1] published more than
50 years ago. A number of review papers, books [2–4]
and hundreds of journal papers on this topic have been
published since that time but still readers may find it difficult
to choose an appropriate measurement technique to satisfy
their measurements needs. In this paper, an overview
of measurement techniques applicable for measurements of
the complex permittivity of various materials at microwave
frequencies is presented.

In the frequency domain the complex permittivity of
any linear material is generally defined as a tensor quantity
describing the relationship between the electric displacement
( �D) and the electric field ( �E) vectors

�D = ↔
ε �E. (1)

For passive reciprocal materials such as ionic dielectric single
crystals the permittivity tensor is symmetric and can be

diagonalized which means that in a certain specific coordinate
system it takes the diagonal form

↔
ε =


ε11 0 0

0 ε22 0
0 0 ε33


 . (2)

For polycrystalline materials, glasses, plastics and some
crystals (e.g., having cubic crystallographic structure) all
diagonal elements become identical and the complex
permittivity becomes a scalar quantity. The complex
permittivity of an isotropic material in general can be written
as

ε = ε0εr = ε0

(
ε′

r − jε′′
rd − j

σ

ωε0

)
= ε0ε

′
r(1 − j tan δ) (3)

where tan δ is the total dielectric loss tangent given by

tan δ = tan δd +
σ

ωε0ε′
r

(4)

where εr is the relative complex permittivity, ω is the angular
frequency, σ is the conductivity, ε0 = 1/(c2µ0) ≈ 8.8542 ×
10−12 (F m−1) denotes permittivity of vacuum and tan δd is the
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dielectric loss tangent associated with all other dielectric loss
mechanisms except conductivity.

The dielectric loss tangent of any material describes
quantitatively dissipation of the electric energy due to different
physical processes such as electrical conduction, dielectric
relaxation, dielectric resonance and loss from nonlinear
processes (such as hysteresis) [5]. When we measure the
loss of a dielectric at a single frequency we cannot, in general,
distinguish between them. Phenomenologically, they all give
rise to just one measurable quantity, namely, the total measured
loss tangent. The origin of dielectric losses can also be
considered as being related to the time delay between the
electric field and the electric displacement vectors.

For some materials like superconductors conductivity
itself contains two terms: real (conductivity related to normal
current) and imaginary (conductivity related to supercurrent).
It is easy to prove that conductivity related to the supercurrent
can be formally treated as a negative real permittivity.
Similar phenomena take place in metals and semiconductors
at very high frequencies (infrared and optical). From a
measurement point of view materials such as dielectrics,
metals and semiconductors can be characterized by the
complex permittivity. The only differences between these
materials at microwave frequencies are related to the values
of real and imaginary parts of permittivity. For example, for
metals the imaginary part of permittivity is many orders of
magnitude larger than the real one while for dielectrics usually
the real part is larger than the imaginary one.

Some materials commonly used at microwave frequencies
such as ferrites exhibit magnetic properties that must
be considered in measurements of their permittivity. The
permeability tensor µ describes relationship between the
magnetic induction �B and magnetic field �H vectors (1):

�B = ↔
µ �H. (5)

The most important microwave applications of ferrites are
related to their non-reciprocal properties. In the presence of
static magnetic field magnetizing ferrite material along z-axis
of Cartesian or cylindrical coordinate system permeability of
ferrite material is represented by Polder’s tensor (6) [6]. Off-
diagonal components of Polder’s tensor are purely imaginary
but they do not describe any magnetic losses since they appear
with opposite signs. If ferrite material is lossy then particular
tensor components (µ, κ, µz) become complex:

↔
µ = µ0


 µ jκ 0

−jκ µ 0
0 0 µz


 . (6)

In addition to the intrinsic material properties defined above,
we must concern ourselves with the extrinsic quantities
we encounter in measurements of samples in different
measurement cells. At microwave frequencies the size of
measurement cells can be smaller, comparable or larger
than the wavelength. In the first case, a measurement cell
containing a sample under test can be treated as a lumped
impedance circuit. In such a case the measured quantity
is the complex impedance (or the complex admittance)
and measurements are usually performed using impedance
analysers. At higher frequencies external parameters are
the complex reflection and/or the complex transmission
coefficients and their measurements are usually performed

Figure 1. Transmission line measurement cell.

using vector network analysers. The second group of
measurement techniques is often called wave techniques. Both
lumped impedance and wave techniques can be employed in
resonators. Resonators are measurement cells with resonating
electromagnetic fields inside them that are used to obtain
high sensitivity for measuring the loss of low-loss dielectrics.
Various wave techniques are used to measure the complex
permittivity. Differences between techniques are related to
both the cells used for measurements and mathematical models
describing relationships between quantities that are directly
measured (e.g., transmission and reflection coefficients) and
the complex permittivity. Choice of a specific technique
depends on several parameters such as frequency, size and
shape of available samples, range of dielectric losses and
presence of anisotropy.

2. Transmission-line and free-space methods

Transmission and reflection methods are based on
measurements of transmitted and/or reflected electromagnetic
power from a sample under test illuminated by a well-
determined incident electromagnetic wave. If the material
of the sample is isotropic then determination of the complex
permittivity and the complex permeability is possible from
two measured parameters: the complex reflection (S11)
and the complex transmission (S21) coefficients. For non-
magnetic materials the complex permittivity can be derived
only from one measured complex parameter (either S11 or
S21). Transmission–reflection measurements can be performed
employing closed measurement cells, open-ended probes but
can also be undertaken in a free-space environment.

2.1. Coaxial and waveguide cells

At frequencies below millimetre waves the sample under
test is often situated in a measurement cell made as a short
section of coaxial line, e.g., [7–9] or waveguide as shown
in figure 1. There are published standard methods for the
transmission-line technique: ASTM D5568–01 [10] and UTE
(Union Technique de l’Electricité) [11]. ASTM D5568–
01 standard presents a full procedure for transmission-line
measurements, including measurements on magnetic materials
and measurements in waveguide. The UTE standard [11]
is for coaxial measurements on thin specimens in a special
coaxial-line cell. Specimens are machined to the same length
as the cell. To mitigate the air gap problem, the gaps are
filled using a low-melting-point alloy. In determination of
material properties one has to know the relationship between
measurable quantities such as the complex reflection and the
complex transmission coefficients, dimensions of the cell
and sample and the complex permittivity of the sample.
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Figure 2. Transmission lines containing samples having dimensions
smaller than their cross section.

Figure 3. Ratio of the actual (real) permittivity of a sample to the
measured permittivity versus relative gap value between sample and
inner conductor of coaxial cell.

This requires solutions of Maxwell’s equations for the cell
containing the sample. Exact solutions are available for a few
simple shapes of transmission lines when the sample under
test occupies their whole cross section between two planes
perpendicular to the line (e.g., for the structure shown in
figure 1). When this condition is not satisfied, only numerical
solutions of Maxwell’s equations are available. Computations
based on exact solutions usually employ explicit Nicolson and
Ross expressions for the complex permittivity [7], but they
can be unstable producing erroneous results when the length
of the specimen is close to one or more half-wavelengths in
the medium of the dielectric. Paper [12] presents an explicit
algorithm which is believed to be more stable. An alternative
approach uses iterative algorithms [13].

Transmission/reflection techniques are especially useful
for broad frequency band measurements of lossy dielectric
liquids [14]. Measurements of solid materials are more
difficult, especially those having large permittivities. This
is associated with the presence of air gaps between sample
and metal parts of the measurement cells as shown in
figure 2. The electric field for the TEM mode of coaxial
cell is perpendicular to metal–dielectric interfaces and in
the presence of air gaps becomes discontinuous. In most
cases air gaps are non-uniform and very difficult to be
measured and therefore to be accounted for. When the gap
is neglected in electromagnetic analysis it causes substantial
errors in permittivity determination. In figure 3 quantitative
permittivity errors are shown versus relative gap values
between inner conductor and a dielectric sample. One can
notice that relative permittivity errors increase with increasing

Figure 4. Coaxial and waveguide cells used for measurements of
high permittivity materials. To minimize air gap influence both ends
of samples are metallized.

gap and permittivity values. In order to mitigate errors
associated with air gaps solid samples are often metallized
or covered with conductive pastes or solders (as in [11]), but
this usually creates additional errors in dielectric loss tangent
determination.

Although in principle measurements in coaxial lines
employing TEM mode can be performed up to very high
frequencies, in practice, they are rarely performed at
frequencies higher than 10 GHz. Reasons for this are decrease
of measurement accuracy related to smaller size of samples
(their length should be smaller than half the wavelength to
avoid resonances in the sample), increase in parasitic losses
and increasing influence of imperfections in measurement
systems on determination of the complex permittivity. More
information on this topic can be found in [4]. The waveguide
transmission line method has similar accuracy and resolution
as the coaxial transmission line method but it is typically used
at higher operating frequencies (lower frequency is always
limited by the cut-off frequency of a specific waveguide).
One of its advantages over the coaxial transmission line
method is lack of an inner conductor which makes the air
gap problem less critical. On the other hand, the frequency
coverage for the waveguide transmission line method is
smaller than for the coaxial counterpart and requires additional
equipment like coax-waveguide adapters when used with
modern network analysers. Measurements of high permittivity
materials, such as ferroelectrics using samples that fully
occupy cross section of coaxial line or waveguide become
inaccurate due to high impedance mismatch between the
sample and air filled sections of the transmission line. For
measurements of ferroelectrics the cells shown in figure 4
are used [15, 16]. For such cells exact solutions of Maxwell’s
equations are not available so numerical techniques of
electromagnetic analysis must be used to find the relationship
between transmission and reflection coefficients and the
complex permittivity. The upper measurement frequency
limit for the coaxial cell shown in figure 4 is about
1 GHz for materials having permittivities of the order of a
few thousands.

The main features of the guided transmission line
technique can be summarized as follows:

Advantages

• Relatively broadband frequency coverage;
• Suitable for measurements of magnetic materials

(ferrites);
• One of the best techniques at microwave frequencies for

high loss and medium loss samples. Uncertainties for real
permittivity better than ±1%.
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(a) (b)

Figure 5. Open transmission line measurement cells: (a) coaxial and (b) waveguide.

Figure 6. Schematic diagram of arrangements for free-space transmission/reflection or reflection measurements.

Disadvantages

• For solid specimens significant errors caused by air gaps;
• Limited resolution of loss tangent measurements

(typically ±0.01).

2.2. Open-ended probes

One of the best techniques for measurements of lossy
dielectrics (especially biological tissues) is an open-ended
transmission line probe [17–24] schematically depicted in
figure 5. This technique is applicable for measurements of
non-magnetic materials. Since for open-ended transmission
line geometry exact solutions of Maxwell’s equations are
not available, the complex permittivity is determined from
measurements of the complex reflection coefficient S11

employing one of the rigorous techniques of electromagnetic
analysis such as mode matching, finite element of finite
difference. A single coaxial probe can typically operate
over a frequency range of about 30:1 with uncertainty for
real permittivity order of ±3% for suitable materials. The
frequency range depends on the diameter of the coaxial
aperture and, e.g., a coaxial probe with 7 mm aperture can
operate from 200 MHz to 6 GHz. The best measurements
accuracy and resolution is achieved around the centre
frequency of this band. Smaller probes can cover appropriately
higher frequencies but measurement uncertainties typically
increase with increasing frequency. In measurements of solids
the air gap problem is important but it can be mitigated by
pressing the probe against a flat surface of the sample under
test. It is only helpful if the sample is relatively soft.

Open-ended waveguide probes [20–24] are used less
often than coaxial probes, partly because they are limited in
frequency range and at lower frequencies they are physically
large. Waveguide probes offer two advantages over coaxial
probes for specific applications. First, such probes are better
matched for measuring lower permittivity than coaxial probes

of similar size and at a similar frequency. Second, they can
be used for measurements of anisotropic materials since the
electric field for the dominant mode of rectangular waveguide
is linearly polarized. Two permittivity tensor components
of uniaxially anisotropic material can be derived by carrying
out two measurements on the flat face of the specimen, with
the specimen orientated in two orthogonal directions: one
parallel to the anisotropy axis and the other perpendicular to
the anisotropy axis. A full numerical analysis that takes into
account permittivity as a tensor must be performed in order to
evaluate properly the two permittivity components [24]. In all
other respects waveguide probes are similar to coaxial probes.

Advantages of coaxial and waveguide open-ended probe
techniques:

• Quick, easy and relatively cheap to use compared with
other methods;

• A single probe can be used over a frequency range of 30:1
with suitable samples;

• Well-suited for non-destructive testing.

Disadvantages of coaxial and waveguide open-ended
probe techniques:

• Air gaps between specimens and probes are difficult to
avoid with hard solid specimens;

• Difficult calibration;
• The methods are generally less accurate than techniques

described in the previous section with typical uncertainties
of ±3% for real permittivity.

2.3. Free-space measurements of the complex permittivity

At millimetre wave frequencies instead of transmission line
cells and open-ended probes, free-space measurements are
used. Measured quantities are again the complex scattering
matrix coefficients (transmission, reflection or both) measured
on a sample under test situated between two antennas or in front
of one antenna as shown in figure 6. One of the requirements
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for accurate free-space measurements is that the size of
the samples under test in the direction perpendicular to the
incident wave is larger than the electromagnetic beam width,
so diffraction from the edges of samples can be neglected.

Free electromagnetic fields are typically radiated
as beams from antennas. In the unfocused-beam
methods electromagnetic energy creates diverging beams, so
corrections for attenuation of the beam between transmitting
and receiving antennas have to be incorporated in the method.
The beam typically extends beyond the aperture of the
receiving antenna at relatively short distance and may also
spread beyond the aperture of the sample. Such methods are
therefore prone to errors caused by diffraction at antennas
and sample edges. For this reason focused-beam methods
are more often used in practice. Dielectric lenses or concave
mirrors are used to focus the beam. The most commonly
used calculable beam is the Gaussian beam [24, 25] that can
be radiated from corrugated-horn antennas [26, 27]. For a
Gaussian beam, electromagnetism decays exponentially (in
the manner described by the Gaussian function) in the radial
direction with maximum magnitude at the axis of beam
propagation, so diffraction problems may be made negligible.
The practical ability to focus Gaussian beams improves as the
frequency increases up to the terahertz region. At sufficiently
high frequencies quasi-optical methods essentially become
optical methods. Normal-incidence unfocused reflection and
transmission have been used by a number of researchers
for measuring large-area laminar specimens (see, e.g., [28]
for a review). The measurements can be easily performed
by using matched waveguide horns attached via coaxial
cables to a network analyser, although in the past accurate
measurements were performed with less advanced equipment
such as waveguide bridges [29]. Computation of transmission
and reflection coefficients is simple, assuming a plane-
wave approximation, and such an approximation becomes
more accurate as frequency increases. By rotating the sample
about an axis perpendicular to the direction of propagation
one can perform measurements at the Brewster angle of
incidence [31]. Measurements can also be performed as a
function of the angle of incidence [32]. Such measurements
are often more accurate than those performed at normal
incidence. In recent years, focused reflection and transmission
methods have been improved by full understanding of the
theory of corrugated-horn antennas and advances in their
manufacturing. Complete measurement systems for laminar
specimens have been constructed either with mirrors [33] or
lenses [34] for focussing. Such systems are commercially
available at frequencies from 1.5 GHz up to the sub-millimetre
region of the spectrum. A typical measurement system is
shown in figure 7.

The sample under test is situated in the narrowest part of
the Gaussian beam where the beam is approximated by a plane
wave. Such approximation introduces some errors because
the Gaussian beam wavelength is not exactly the same as
that of a plane wave at the same frequency. Free-space
techniques are generally less accurate than their guided-wave
equivalents and the focused methods are slightly more accurate
than the unfocused ones. It is difficult to assess uncertainties
quantitatively but according to [4] they lie in the range
±(1–10)% for real permittivity and from ±5% to over 20%
for dielectric losses.

Figure 7. A quasi-optical focused beam technique for measuring
the dielectric properties of a laminar sample at normal incidence.

Major areas of application of transmission and reflection
methods described in section 2 are measurements of medium to
high loss isotropic materials as a function of frequency. Some
of these techniques (those where the electric field is linearly
polarized) allow measurements of the complex permittivity for
anisotropic materials.

3. Resonance methods

Resonators and cavities form a special class of measurement
cells that are especially useful for measurements of very
low loss materials, but they also offer the highest possible
accuracy of measurements of real permittivity. Resonant
methods can be divided into two categories. The first category
includes different kinds of resonant cavities (including re-
entrant cavities, cylindrical and rectangular cavities), open
resonators and resonators loaded with a dielectric (e.g., split
post dielectric resonators). For the second category the sample
under test, itself, can create a dielectric resonator. Resonant
methods employing cavities [35–44] and open resonators
[45–52] operating at a single, dominant or a higher order
well-established mode have been used for measurement of
dielectric materials for more than 60 years. In a resonant
cavity the electric energy stored in the sample under test is
usually small compared to the total electric energy stored
in the whole cavity (except re-entrant cavities [43, 44]).
In the second category, a cylindrical or spherical dielectric
sample under test, enclosed in a metal shield or situated in
an open space, constitutes a dielectric resonator, where the
resonance frequencies predominantly depend on permittivity
and dimensions of the sample. In the dielectric resonator
techniques, typically more than 90% of the total electric
energy is stored in the sample. Progress in measurements
of dielectrics employing resonant techniques during the last
decades has been associated with two factors: the development
of new low-loss dielectric materials and the advances in
rigorous techniques of electromagnetic field computations.
Using new low-loss dielectric materials it was possible to
construct resonators filled with dielectrics that have higher
Q-factors and better thermal stability than traditional all-metal
cavities. Developments in electromagnetic field simulations
have made it possible to construct resonant structures without
restrictions on sample size or shape and also to obtain high
accuracy with measurements.
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(a) (b)

Figure 8. Cylindrical cavities: (a) containing a dielectric rod and
(b) containing a dielectric disc.

(a) (b)

Figure 9. Spherical resonators: (a) a dielectric sphere in a free
space and (b) a spherical cavity containing a dielectric sphere.

Figure 10. Cylindrical dielectric resonator between conducting
planes.

3.1. General concepts of measurements by resonance
methods

Measured quantities in resonance techniques are the resonant
frequency and the Q-factor of a specific mode excited in the
resonant structure containing the sample under test. The
complex permittivity of the sample can be evaluated from
these two measured quantities provided all other parameters of
the structure are known. These parameters include dimension
of the structure, surface resistance of metal parts, coupling
coefficients, radiation losses and the complex permittivities
of dielectric supports (if present). Exact relations between
permittivity, sample and cavity dimensions, and measured
resonant frequency and the unloaded Q-factor can only be
derived if resonant structures that permit theoretical analysis
by separation of variables are used. Practically, this is only
possible when the measurement system has simple cylindrical,
spherical or rectangular geometry and where any permittivity
inhomogeneity in the measured structure exists in only one of
the principal coordinate directions and all conductive surfaces
are made of perfect conductors. Examples of such geometries
are shown in figures 8–10. For these geometries transcendental
equations can be derived that represent relationship between
the complex permittivity and the complex angular frequencies
of a specific resonant structure. The general form of such an
equation can be written as

F(εr, ω) = 0, (7)

where Re(ω) = 2πf, Im(ω) = Re(ω)/2/Qd and Qd is the
Q-factor depending on dielectric losses and radiation losses in
the resonant structure.

Strictly transcendental equations can be derived if metal
wall losses and coupling losses are assumed to be zero,
but these extra losses are also taken into account in the

complex permittivity determination. This problem will be
discussed later on. Examples of transcendental equations that
are commonly used in measurements of dielectric properties
and that are important for understanding the mathematical
description of different physical phenomena in resonant
structures are given below.

The transcendental equation for TE01p modes of a
cylindrical cavity [41] is shown in figure 8(b) for L1 = 0.

kz0 tan(kzh) + kz tan[kz0(L − h)] = 0, (8)

where k2
z0 = (ω/c)2 −(u′

01/b)2, k2
z = (ω/c)2εr −(u′

01/b)2 and
u′

01 is the first root of the derivative of Bessel function of the
first kind and zero order u′

01 = 3.831 71.
The transcendental equation for all modes in a parallel

plate cylindrical dielectric resonator [53] is[
εrJ

′
m(kρ1a)

kρ1aJm(kρ1a)
− H ′(2)

m (kρ2a)

kρ2aH
(2)
m (kρ2a)

]

×
[

J ′
m(kρ1a)

kρ1aJm(kρ1a)
− H ′(2)

m (kρ2a)

kρ2aH
(2)
m (kρ2a)

]

= m2k2
z

k2
2

[
1

(kρ1a)2
− 1

(kρ2a)2

]
, (9)

where

k2
1 = ω2

c2
εr k2

2 = ω2

c2

k2
ρ1 = k2

1 − k2
z k2

ρ2 = k2
2 − k2

z

k2
z = pπ

L
.

The transcendental equation for TEn0p modes of a dielectric
sphere in free space [54] is

ε1/2
r Jn−1/2(ka)H

(2)
n+1/2(k0a) − Jn+1/2(ka)H

(2)
n−1/2(k0a) = 0,

(10)

where

k = ω

c

√
εr, k0 = ω

c

and J and H(2) denote Bessel’s and Hankel’s functions.
The transcendental equation for TEn0p modes of a

dielectric sphere in a spherical cavity [54] is

ε1/2
r Jn−1/2(ka)[Jn+1/2(k0a)Yn+1/2(k0b)

− Yn+1/2(k0a)Jn+1/2(k0b)]

− Jn+1/2(ka)[Jn−1/2(k0a)Yn+1/2(k0b)

− Yn−1/2(k0a)Jn+1/2(k0b)] = 0. (11)

3.1.1. Q-factors and parasitic losses in resonant structures.
The Q-factor of a resonant structure, for any mode of operation,
is associated with different kinds of losses such as dielectric
losses (Qd), conductor losses (Qc), radiation losses (Qr) and
coupling losses (Qcoupling). Particular Q-factors are related by
the well-known formulae (12)–(16):

Q−1 = Q−1
d + Q−1

c + Q−1
r + Q−1

coupling (12)

Q−1
d =

I∑
i=1

pei tan δi (13)

Q−1
c = RS/G (14)
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where Q is the total Q-factor of the resonant structure, RS is
the surface resistance of the metal shield at a given resonant
frequency, G is the geometric factor of the shield, pei is the
electric energy filling factor for the ith dielectric region.

The geometric factor G and electric energy filling factors
pei are defined as follows:

G = ω

∫∫∫
Vt

µ0|H|2 dv∫∫
S
|Hτ |2 ds

(15)

pei =
∫∫∫

Vd
εi |E|2 dv∫∫∫

Vt
ε(v)|E|2 dv

(16)

where Vd is the volume of dielectric resonator, Vt is the volume
of whole resonant structure, ε(v) is the spatially dependent
permittivity inside the whole resonant structure and εi is the
permittivity of ith dielectric region.

For low-loss materials electric energy filling factors can
be alternatively determined from incremental frequency rules,
that require computations of the derivative of the resonant
frequency with respect to the real permittivities of dielectric
regions [55]. For cylindrical TE0 mode resonant structures
having axial symmetry an incremental frequency rule can also
be used to determine geometric factor [56]. In this case
derivatives are to be computed with respect to cavity wall
perturbations.

Coupling losses are usually determined experimentally.
For a resonator with two coupling ports the relationship
between the total Q-factor (or loaded Q-factor), the unloaded
Q-factor (Qu) and coupling coefficients (β1 and β2) is given
by the formula

Q−1
u = Q−1

d + Q−1
c + Q−1

r = Q−1

1 + β1 + β2
. (17)

The unloaded Q-factor can be determined either if coupling
coefficients are known from measurements or if they both
are at least two orders of magnitude smaller than unity. In
the last case one can assume within experimental errors that
the unloaded Q-factor is the same as the total measured Q-
factor. The Q-factor due to conductor losses can be evaluated
from equations (14) and (15) providing that the magnetic field
distribution for a specific mode of interest in the resonant
structure and the surface resistance of metal shield are known.
For close resonant structures radiation losses are equal to zero,
so the Q-factor due to dielectric losses can be determined from
the measured unloaded Q-factor value subtracting the part
depending on conductor losses using equation (17). Then the
complex angular frequency can be evaluated (as in formulae
(7)) and finally transcendental equation can be solved directly
for the complex permittivity.

3.2. Measurements in resonant cavities

Resonant cavities having axial symmetry are those most often
used in the dielectric metrology. Cavities of this kind can
operate on different modes but in practice one of the few first
modes of the frequency spectrum is used.

3.2.1. TE01n mode cavities. Some of the most frequently
employed modes are the TE01n ones that have been used
for more than 60 years for measurements of the complex
permittivity of disc samples (as shown in figure 8(b)) made
of low-loss dielectrics [38–40] but also for measurements of
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Figure 11. Resonant frequency versus imaginary part of permittivity
for the TE011 mode of a cylindrical cavity containing a dielectric
disc sample. Parameters assumed in computations: L = 25 mm,
b = 25 mm, L1 = 0 mm, h = 0.5 mm. The dotted line corresponds
to the TE011 mode resonant frequency of the empty cavity.
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Figure 12. Q-factor due to dielectric losses versus imaginary part of
permittivity for the TE011 mode of a cylindrical cavity containing a
dielectric disc sample.

conductivity of semiconductors and metals [41, 42]. A typical
operating frequency range for the TE01n mode cavities is
8 GHz–40 GHz. One of the main advantages of the TE01n

mode cavities is a circumferential electric field distribution that
is tangential to a cylindrical sample inserted symmetrically in
the cavity. As a result the electric field is continuous across
dielectric–air interfaces that allows the air gap to be omitted
without degradation of measurement uncertainties. Also the
surface currents in the metal cavity walls are circumferential,
so physical contact between the lateral surface and the cavity
bottoms is not important, allowing easy construction of tunable
cavities and easy sample insertion.

Let us now consider theoretical aspects of measurements
of various materials in the TE011 mode cylindrical cavity shown
in figure 7(b) when the sample under test having arbitrary
losses is situated directly on the bottom of the cavity. Results
of the TE011 mode resonant frequency and Q-factor due to
dielectric loss evaluation are shown in figures 11 and 12.

Both resonant frequency and Q-factor due to dielectric
losses exhibit very characteristic behaviour (common for any
other resonator) as a function of the imaginary part of the
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permittivity. In a low-loss dielectric region the resonant
frequency is smaller than that for the empty cavity and
the resonant frequency shift ( f0 − f ) depends on the real
permittivity and thickness of the sample, but practically does
not depend on losses. The inverse of the Q-factor due to
dielectric losses in this region depends linearly on the dielectric
loss tangent according to formulae (18) with a constant value
of the electric energy filling factor pe:

Q−1
d = pe tan δ. (18)

For the low dielectric loss region the real part of the complex
permittivity can be determined on the basis of the measured
resonant frequency from a simplified transcendental equation
where both the complex permittivity and the complex angular
frequency have imaginary parts equal to zero. Evaluation of
the dielectric loss tangent from the measured unloaded Q-
factor value requires determination of all parasitic losses and
electric energy filling factor in the sample. For a closed cavity
conductor losses can be evaluated from formulae (14) and (15)
assuming that the surface resistance of the cavity is known.

In fact the surface resistance in a closed cavity is always
determined (at the resonant frequency of the empty cavity f0)
from the measured Q-factor of the empty cavity and then it
is scaled to the frequency of the cavity containing the sample
according to the formula

Rs(ω) = Rs(ω0)

√
ω

ω0
. (19)

The simplified approach of a low-loss sample gives results
that are essentially the same as the complex angular frequency
approach if the dielectric loss tangent of the sample is
smaller than 0.1. If the losses become higher then the
resonant frequency varies as a function of loss as seen
in figure 11. As losses in the sample increase and the
dielectric loss tangent becomes greater than 10 then both
the resonant frequency and Qd predominantly depend on the
imaginary part of the permittivity. In this region only the
imaginary part of the permittivity can be determined. For
relatively thin samples situated on the cavity bottom the
electric energy filling factor in the sample is very small and
the Q-factor depending on dielectric losses is greater than
100, so materials having arbitrary losses can be measured
(at least in principle). On the other hand, for the imaginary
part of the permittivity smaller than 0.1 (or dielectric loss
tangent smaller than 0.01) the Q-factor due to dielectric losses
becomes larger than 105. Since Q-factors due to parasitic
losses (conductor losses) in TE011 mode cavities are typically
in the range 15 000–30 000 (depending on frequency), so in
such cases measurement uncertainties for low-loss dielectrics
substantially increase. Measurements of low-loss dielectrics
in TE01n mode cavities are possible either by using thicker
samples (optimum thickness is half the wavelength or its
multiple) or by elevating the sample to the position where the
electric field approaches a maximum. In both cases electric
energy filling factors in the sample become relatively large and
high resolution of loss tangent determination can be obtained
(of the order of 5 × 10−5). Typical uncertainties of real
permittivity determination employing TE01n mode cavities are
the order of 0.5%. At frequencies lower than 8 GHz, the
dimensions of TE01n mode cavities (and samples) become too
large for practical applications so different resonators must be
used.

Figure 13. Schematic diagram of re-entrant cavity.

3.2.2. TM0n0 mode and re-entrant cavities. In the past, the
most commonly used cells operating in the frequency range
from 2 GHz to 10 GHz were TM010 mode cavities with rod
samples as shown in figure 8(a) [16, 35, 37] and for frequencies
from 50 MHz to 2 GHz were re-entrant cavities [16, 43, 44] as
shown in figure 13. The electric field for both kinds of cells,
the TM010 mode cavity and the re-entrant cavity, has dominant
axial component with maximum at the resonator axis while the
magnetic field has only azimuthal component. As a result of
such an electromagnetic field distribution the surface currents
have a radial component on horizontal metal surfaces and an
axial component on vertical surfaces of the cavities. Such a
field distribution creates practical measurement difficulties.
Firstly, any air gaps between sample and metal surfaces
introduce significant errors in real permittivity determination
(similar to those described for the coaxial transmission line
method). Secondly, surface current distribution does not
allow for easy disassembling of the resonant structure (because
contact impedances reduce the Q-factor, and they tend not to
be reproducible). This makes it necessary to have a door
or lid in the cavity for sample insertion. In a re-entrant
cavity the door is typically made in the lateral surface of
the resonator and usually does not significantly change the
Q-factor; for a TM010 mode cavity a small lid is usually made
in the centre of one or two cavity bottoms. Lids in the TM010

mode cavity must be sufficiently small to get reproducible
Q-factor values. Another possibility is to make small holes
through the cavity and measure a sample that is longer than
the height of the cavity. However, in such a case analysis
of the structure becomes a problem. For a TM010 mode cavity
the transcendental equation is known only if the height of
the sample is the same as the height of the cavity otherwise
numerical analysis of the structure is necessary. For a re-
entrant cavity the transcendental equation in a closed form does
not exist for any case but rigorous mode-matching solutions
are available [44]. Q-factors due to conductor losses for re-
entrant cavities are typically in the range 1000–5000 and for
TM010 mode cavities in the range 2000–10 000. Since the
electric energy filling factor in a re-entrant cavity is close to
unity, resolution of dielectric loss tangent measurements in
this cavity is also relatively high, i.e. of the order of 5 × 10−5.
Similar resolutions of dielectric loss tangent measurements
can be obtained in TM010 mode cavities if samples under
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(a) (b)

Figure 14. Fabry–Perot resonators used for measurements of
laminar dielectrics.

test have sufficiently large diameter. Uncertainties of real
permittivity determination for the re-entrant cavity and the
TM010 mode cavity might be strongly affected by the presence
of air gaps. Errors associated with gaps increase as the aspect
ratio of the sample (diameter to height) increases. If large
permittivity samples are to be measured or/and their aspect
ratio is large then the flat surfaces of samples must be metalized
to obtain reasonable results. In re-entrant cavities uncertainties
might also be affected by computational errors, as a rigorous
transcendental equation for this cavity is not available. It
should also be mentioned that in the same measurement set-
up higher order TM0n0 modes can be used for measurements
of permittivity and dielectric loss tangent as a function of
frequency. The transcendental equation for TM0n0 modes
remains the same as for the TM010 mode. Resonators of this
kind are commercially available with software for the complex
permittivity determination.

Typical measurement uncertainties for real permittivity
are about 0.5%–2% for TM010 mode cavity and are about 1%–
3% for re-entrant cavity.

3.2.3. Fabry–Perot resonators. Fabry–Perot resonators that
are also known as open resonators are commonly used in the
millimetre frequency range [45–52]. Typical geometries of
Fabry–Perot resonators used for measurements of the complex
permittivity of low-loss dielectrics are shown in figure 14. The
electromagnetic field distribution for Fabry–Perot resonators
is not accurately known but Gaussian beam approximation
for the dominant family of TEM00q modes allows quite
accurate measurements at the frequency of one of these modes
where sample thickness is approximately the same as half
the wavelength. The sample size must be sufficiently large
to comprise full Gaussian beam energy; otherwise diffraction
from sample edges may cause radiation losses. Also the size
of the mirrors must be sufficiently large compared to the width
of the Gaussian beam. The Q-factor for an empty Fabry–Perot
resonator operating at millimetre wave frequencies is typically
in the range 100 000–200 000 and increases with increasing
mode index. On the other hand loss tangent resolution does
not increase with increasing mode indices because in such a
case electric energy filling factors in the sample decrease.

For a low permittivity sample having half the wavelength
thickness the uncertainty of real permittivity can be as low

as 0.5% but it can be larger for samples having arbitrary
thickness. This is related to the approximate electromagnetic
modelling of such structures. Loss tangent resolution in
Fabry–Perot resonators is of the order of 1 × 10−5 if the
mode of interest does not interfere with spurious modes and
radiation losses are not present. Full wave electromagnetic
modelling of Fabry–Perot resonators is very difficult and at
present none of the commercially available electromagnetic
simulators gives satisfactory results for analysis of modes
with large axial mode indices. The Q-factor of Fabry–Perot
resonators can be increased at one single frequency by a factor
of 5 or more employing so-called Bragg reflectors [57]. Due
to their extremely high Q-factor such resonators seem to be
ideal for precise measurements of the complex permittivity of
gases.

3.3. Dielectric resonator structures

For measurement techniques belonging to this category, the
dominant part of the electromagnetic energy (usually more
than 90%) is concentrated in the sample under test. A lot of
specific techniques have been described that employ different
modes and different measurement cells.

3.3.1. TE011 mode dielectric resonators. Initially,
the dielectric resonator technique for measurements of
permittivity and losses of low-loss dielectrics was proposed
by Hakki–Coleman [58] in 1960 employing the TE011 mode
of operation in a rod resonator terminated from both sides
by conducting planes as shown in figure 10. Since its
discovery, it has become one of the most accurate and the most
frequently used techniques for measurements of permittivity
and dielectric losses of solid materials. It is also known under
different names as the Courtney [59] or parallel plate holder
and it is also proposed as one of International Standards IEC
techniques [60] for measurements of the complex permittivity
of low-loss solids. It benefits from a very simple measurement
configuration and easy access for introducing and removing
specimens. For the TE011 mode the applied electric field is
continuous across the sample boundary, so air gaps between
dielectric and metal planes do not play a significant role.
As a result, high measurement accuracy of real permittivity
can be achieved. This technique was applied by Courtney to
measure both the complex permittivity and the complex scalar
permeability of microwave ferrites. The main disadvantage
of the originally described technique was that the surface
resistance of metal plates could not be measured without
the sample as in cavity methods. This difficulty has been
overcome by measurements of two different TE01n modes on
two dielectric samples made of the same material [61].

The TE011 mode is one of several modes in the so-
called ‘trapped state’, which means that radiation losses
usually are not present for infinitely extended metal plates.
Electromagnetic fields are evanescent in the air region (see
figure 10) if the distance between the plates is smaller than
half the wavelength corresponding to the resonant frequency.
This happens if the aspect ratio of the dielectric sample is
larger than a certain minimum value which depends on the
permittivity of the sample. The lower the permittivity of
the sample, the larger must be the aspect ratio of the sample
to allow omitting the radiation losses. For example, for a
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Figure 15. Schematic diagram of a TE01δ mode dielectric resonator.

PTFE sample (with a permittivity of about 2.06) the minimum
aspect ratio is about 2 but for alumina it is about 0.6. To
avoid radiation losses in practice when dimensions of metal
plates are finite the aspect ratio of the sample must be larger
than those minimum values. It should be mentioned that in
the case when metal plates are separated by a distance larger
than half the wavelength, the TE011 mode dielectric resonators
have very low Q-factors predominantly affected by radiation.
For example, for a sample having permittivity about 30 the
Q-factor due to radiation losses is about 40. Under such
conditions resonators cannot be used for measurements of low
dielectric losses.

If an additional metal cylinder is introduced (creating a
cylindrical cavity) in the parallel plate dielectric resonator
operating in the trapped state then its resonant frequencies and
Q-factors remain almost unaffected when the diameter of the
cylinder is sufficiently large. Resonators of this kind may have
some advantages over the parallel plate structure (especially
for variable temperature measurements). Such resonators
have been used for measurements of dielectric properties of
several dielectric materials at cryogenic temperatures [62]. To
minimize conductor losses high temperature superconductors
were used as the end plates. A transcendental equation was
derived for all modes in such a structure in the presence of
uniaxial anisotropy of the sample allowing measurements of
two permittivity tensor components. TE011 mode dielectric
resonators made of sapphire have been also used for
measurements of the surface resistance of high temperature
superconductors, e.g., [63]. Sapphire has dielectric loss
tangent <10−7 at cryogenic temperatures so the dielectric
losses in the structure are negligible, the lateral metal wall
losses are small and calculable and the surface resistance can
be easily determined from equations (12)–(17) (see [63] for
more details).

The uncertainty of the real permittivity measured in a
Hakki–Coleman cell operating at ambient temperatures is
usually of the order of 0.3% with dielectric loss tangent
resolution of the order of 10−5. The latter value is limited
by relatively large parasitic losses in the metal plates.

3.3.2. TE01δ mode dielectric resonators. The effect of
conductor losses on the loss tangent determination in the
dielectric resonator structures can be mitigated if the sample
under test is situated away from all conducting walls as shown
in figure 15. Usually the TE01δ mode is employed. The TE01δ

mode technique is one of the most accurate techniques for
measurements of the dielectric loss tangent of isotropic low-
loss dielectric materials but it can also be used for precise
measurements of real permittivity [64, 65]. Manufacturers
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Figure 16. Geometric factor versus size of metal enclosure for
TE01δ mode dielectric resonators having different permittivities.
Dc/Lc = 2, L1 = (Lc–h)/2, dielectric support neglected.

of low-loss dielectric ceramics usually use this technique to
measure only dielectric losses (as the inverse of the unloaded
Q-factor of the structure shown in figure 15) avoiding analysis
of the structure. They assume that for a metal cavity which is
about three times larger than the dielectric sample conductor
losses can be entirely neglected. As will be shown later such an
assumption is not always valid. There are a lot of advantages
associated with using the TE01δ mode. The most important
are the easy mode identification, small parasitic losses,
especially for high permittivity samples, and the lack of mode
degeneracy. Measurements of real permittivity are possible
but its determination is more difficult than for parallel plate
structure because of the lack of exact solutions of Maxwell’s
equation. However, if accurate numerical techniques are used
the uncertainties of real permittivity determination associated
with numerical modelling are smaller than those associated
with dimensional uncertainties.

In figure 16 results of numerical computations of
geometric factors versus size of metal enclosure are presented.
It is seen that for an empty TE011 cavity geometric factor value
is about 660 
 (which is visible as the limit for Dc/d = 10 for
low permittivity samples) while for a high permittivity sample
with εr = 50 geometric factor values exceed 10 000 
 for 5 <

Dc/d < 8.5.
This means that conductor losses in the cavity for

high permittivity samples have been reduced more than one
order of magnitude compared to the empty cavity, allowing
measurements of dielectric losses at least one order of
magnitude smaller than in the TE01n mode cavities. Typical
resolution of loss tangent resolution employing TE01δ mode
dielectric resonators technique with optimised enclosure is
about 10−6 for high permittivity samples εr > 20 and
uncertainty of real permittivity measurements of the order
of 0.3% (similar for low and high permittivities). Low
permittivity materials are more difficult to measure because
for such materials the TE01δ mode becomes one of the higher
order modes in the frequency spectrum [65]. Only recently
higher order quasi TE0 modes in the structure shown in
figure 15 have been employed for measurements of real
permittivity and dielectric loss tangent as a function of
frequency [66].

3.3.3. Whispering gallery mode resonators. To minimize
further parasitic losses (conductor losses for closed structures
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Figure 18. Schematic diagram of shielded cylindrical whispering
gallery mode resonator. Supports can be made of metal.

or radiation losses for open structures) one can employ the
modes having large azimuthal indices that can be excited in
cylindrical or spherical dielectric samples. They are called
whispering gallery modes because their electromagnetic field
energy is concentrated near the lateral surface but inside the
dielectric sample. The simplest structure of this kind is
a spherical dielectric resonator in free space (figure 9(a)).
Even for lossless dielectrics, transcendental equation (10) has
solutions only for certain sets of complex angular frequencies
due to radiation losses. Formally this is the consequence
of properties of Hankel’s function (they are complex valued
for real arguments). Using the complex frequencies from the
solution of (10), the Q-factor due to radiation can be computed
as

Qr = Re(ω)

2 Im(ω)
. (20)

The results of the computations of radiation loss versus
permittivity for the TEn01 family of an open spherical dielectric
resonator are shown in figure 17. As seen in figure 17, for large
indices ‘n’ and large values of permittivity, the Q-factor due
to radiation approaches a very large value, e.g., Qr � 108 if
εr � 10 and n � 12. Even for low permittivity samples it
is always possible to obtain Qr arbitrarily large by choosing a
sufficiently large index n. It means that even for extremely low-
loss dielectrics the radiation losses for sufficiently high order
whispering gallery modes are much smaller than dielectric
losses.
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Figure 19. Geometric factors of symmetric modes versus
normalized radius of perfect conductor shield for cylindrical
resonator having permittivity εr = 10. It was assumed that L/h = b/a.

For totally shielded resonators there are no radiation losses
but conductor losses resulting from the surface resistance of the
metal shield. The most popular shielded whispering gallery
mode resonators are cylindrical ones situated in a cylindrical
metal enclosure as shown in figure 18. The measurement cell
is similar to that for the TE01δ mode dielectric resonator but
supports are usually made of metal and the sample is situated
symmetrically in the cavity.

In general electromagnetic fields in cylindrical dielectric
resonators are of hybrid nature, i.e. they have all six non-zero
components (except axially symmetric modes). The modes
in the structure shown in figure 18 can be divided into two
categories: symmetric (with respect to the resonator plane of
symmetry) for which the symmetry plane constitutes a perfect
magnetic wall (S-modes) and antisymmetric for which the
symmetry plane constitutes a perfect electric wall (N-modes).
Such nomenclature is only valid if the shielded resonator
possesses a plane of symmetry. For each category only two
mode subscripts are used: the first one corresponding to the
azimuthal index (m) and the second index ‘i’ corresponding
to the sequence of the particular mode on the frequency axis.
Such nomenclature is very useful since it does not require
complicated field plot analysis in order to distinguish between
two unknown indices n (radial) and p (axial). Modes belonging
to the primary WGMR families are therefore labelled as Sm,1

or Nm,1 and all other modes as Sm,i or Nm,i. Modes with
azimuthal index m > 0 of cylindrical resonators are always
doubly degenerate.

The results of the numerical computations of the
geometric factor employing a mode-matching technique are
presented in figure 19. As seen in this figure the geometric
factors increase rapidly with an increase of azimuthal mode
index m, so it is always possible to choose this index so
as to make the conductor losses negligible compared to
the dielectric losses. One of the first papers describing
the use of whispering gallery modes for measurements of
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dielectric losses was published by Braginsky et al [69]. The
authors of this paper measured the modes having the largest
Q-factors on sapphire at cryogenic temperatures. Dielectric
loss tangents were evaluated as the inverse of measured
Q-factors. In later papers full numerical electromagnetic
analysis of the structure was undertaken [68] and the
whispering gallery mode technique used for measurements
of two permittivity tensor components of several uniaxially
anisotropic crystals [70]. This was done by employing two
modes: one belonging to the quasi TE mode family (subscript
H) and the other belonging to the quasi TM mode family
(subscript E).

Real permittivities were evaluated as the solutions of the
system of two nonlinear equations

F1(f
(H), ε⊥, ε||) = 0

F2(f
(E), ε⊥, ε||) = 0

}
. (21)

Once permittivities had been evaluated dielectric loss tangents
were determined from the system of two linear equations

Q−1
(E) = p(E)

e⊥ tan δ⊥ + p
(E)
e|| tan δ|| + RS/G(E)

Q−1
(H) = p(H)

e⊥ tan δ⊥ + p
(H)
e|| tan δ|| + RS/G(H)

}
(22)

where tan δ⊥ and tan δ|| are the dielectric loss tangents
perpendicular and parallel to the anisotropy axis;
p

(H)
e⊥ , p

(H)
e|| , p

(E)
e⊥ , p

(E)
e|| are the electric energy filling factors

perpendicular (subscript ⊥) and parallel (subscript ‖) to
the anisotropy axis of the resonant structure, for quasi-
TM whispering gallery modes (superscript E) and quasi-
TE whispering gallery modes (superscript H), and G(E) and
G(H) are the geometric factors for quasi-TM and quasi-TE
whispering gallery modes.

The main advantages of using whispering gallery modes
are: practically unlimited resolution for dielectric loss tangent
and the possibility of measurements of real permittivities for
uniaxially anisotropic materials with uncertainties down to
0.1%. The main disadvantage is difficult mode identification
and limited ability for measurements of materials having losses
larger than 10−4.

4. Measurements of anisotropic materials with
induced anisotropy

If samples under test are anisotropic they have to be oriented
and cut with respect to their anisotropy axes. Natural
anisotropy might be present in materials that do not possess
symmetric crystallographic structure, but it might also be
induced by mechanical stress or biasing electric or magnetic
field. Measurement techniques for uniaxially anisotropic
crystals have already been described in the former paragraphs.
They employ two different modes excited in an oriented
single-crystal sample. One of the most important materials
belonging to the second group is microwave ferrites that
exhibit gyromagnetic properties in the presence of biasing
static magnetic field. As already mentioned the magnetic
properties of ferrite under uniform bias along the z-axis can
be described by Polder’s tensor (5). The complex permittivity
of polycrystalline ferrites is a scalar quantity, which does not
depend on the static magnetic bias. At frequencies higher than
ferromagnetic resonance magnetic losses in ferrites are usually

Figure 20. Measurement cells used for measurements of the
permeability tensor of microwave ferrites versus static magnetic
bias.

small so measurements of their properties requires application
of resonant measurement cells. Several techniques have
been used to measure ferrite properties that were described
in journal papers, e.g., [35], and summarized in overview
books on microwave ferrites (Gurevich [6], Baden-Fuller
[71]). More recently a dielectric resonator technique was
proposed that allows measurements of all three permeability
tensor components on one rod-shaped ferrite sample [72].
Measurement cells for this technique are shown in figure 20.
This technique uses three different modes in two dielectric
resonators having the same height and internal diameter but
different external diameters. One (larger) dielectric resonator
operates on the TE011 mode while the other on the (smaller)
HE111 mode. The HE111 mode is the first mode in the
trapped state for a parallel plate dielectric resonator. The
external diameter of the smaller resonator is chosen such
that its HE111 mode resonant frequency (with the sample but
without any bias) is approximately the same as the TE011 mode
resonant frequency of the larger resonator (with the sample
but without any bias). Two resonators were used in order to
mitigate the influence of frequency on the measurement results
since permeability components are frequency dependent.
Without any bias the HE111 mode is doubly degenerate, which
means that the two modes corresponding to the opposite
circular polarizations, namely HE+

111 and HE−
111, have identical

resonant frequencies. In practice however due to imperfect
axial symmetry the two modes are split by a few MHz which
gives rise to the measurement uncertainties. In the presence
of a biasing field mode degeneracy is removed due to the
appearance of an off-diagonal component of the permeability
tensor. As this component increases the frequency difference
between the two modes also increases as shown in figure 21.
Resonant frequencies also depend on the other two
permeability tensor components. At zero bias the resonant
frequencies of the degenerate HE111 mode and TE011 mode
depend on two unknowns, namely the scalar permeability
and the scalar permittivity of the ferrite sample, so the
two unknowns can be determined from the system of two
transcendental equations

F10(µd, ε, fHE) = 0
F30(µd, ε, fHE) = 0

}
. (23)

When the permittivity is known the three permeability tensor
components at arbitrary fixed bias can be determined from the
system of three transcendental equations

F1(µ, κ, µz, ε, fHE+) = 0
F2(µ, κ, µz, ε, fHE+) = 0
F3(µ, κ, µz, ε, fTE) = 0


 . (24)
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Finally three magnetic loss tangent components can be found
on the basis of measured unloaded Q-factors of three different
modes as solutions of the system of linear equations

Q−1
1 = p1ε tan δε + p1µ tan δµ + p1κ tan δκ

+p1µz tan δµz + Q−1
1c + Q−1

1d

Q−1
2 = p2ε tan δε + p2µ tan δµ + p2κ tan δκ

+p2µz tan δµzz + Q−1
2c + Q−1

2d

Q−1
3 = p3ε tan δε + p3µ tan δµ + p3κ tan δκ

+p3µz tan δµzz + Q−1
3c + Q−1

3d




. (25)

Results of the determination of the real parts of the
permeability tensor versus bias for yttrium iron garnet (YIG)
are shown in figure 22. More details about this technique
(frequency corrections for individual tensor components)
can be found in [72]. Measurement uncertainties for real
permeability components using this technique are typically of
the order of 1% and the magnetic loss tangent resolution is
about 5 × 10−5.
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Figure 23. Schematic diagram of a split dielectric resonator fixture.

5. Resonators for measurements of laminar
dielectric materials and thin films deposited on
dielectric substrates

Advances in numerical computations of electromagnetic fields
[73] have enabled the implementation of resonant structures
with more complicated geometry. Hence the geometry of a
resonant cavity can be chosen to suit materials having specific
shape and dimensions. The split post dielectric resonator
(SPDR) is a good example of such an approach as it has been
developed specifically for measurement of laminar dielectrics
[74–76]. The geometry of a split dielectric resonator is shown
in figure 23. Currently the SPDR is one of the most convenient
and accurate techniques for determination of permittivity and
loss tangent of PWB and LTCC materials and ferrite substrates
[78] in the frequency range from 1 GHz to 30 GHz.

The main advantages of split post dielectric resonators
are: arbitrary shape of samples under test (they only need
to have uniform thickness), smaller dimensions than for
metal cavity resonators, and possibility of measurement of
various materials including thin film ferroelectrics [79]. With
properly chosen sample thickness it is possible to resolve
dielectric loss tangents to approximately 2 × 10−5 and
Q-factor measurements with an accuracy of 1%. For well-
machined laminar specimens the uncertainty in permittivity
measurements using the SPDR is about 0.3% [77].

At frequencies higher than 20 GHz the size of split post
dielectric resonators becomes very small and their Q-factors
also become smaller than at lower frequencies (about 7000 at
20 GHz). At millimetre wave frequencies split metal cavity
techniques can be alternatively used for non-destructive testing
of laminar specimens [80–82].

6. Summary

This paper has overviewed only a small fraction of the
available techniques for measurement of material properties
at microwave frequencies. A lot of techniques exist that were
not mentioned in this paper that utilize microstrip, stripline and
coplanar waveguide cells (both transmission line and resonant
ones). General properties of such structures are similar to
those described in this paper. Typically transmission/reflection
techniques are useful for characterization of high and medium
loss materials and resonant techniques can be in principle
used for measurements of materials having arbitrary losses.
On the other hand, resonant techniques are in most cases
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limited to one fixed frequency (although sometimes a few
different modes can be used in one measurement cell) while
transmission/reflection techniques can typically operate at
broad frequency bands. One of the most important issues
for all techniques is their sensitivity to the presence of air
gaps between the sample and other parts of the measurement
cell. Resolution of loss tangent measurements for arbitrary
technique is associated with the presence of parasitic losses in
measuring cells. They must be calculable and relatively small
with respect to the losses in the sample in order to measure
precisely losses in the material under test. Determination
of both permittivity and permeability for magnetic materials
and measurements of anisotropic materials always requires
measurements of at least the same number of parameters as the
number of unknowns. Precise determination of permittivity
at microwave frequencies also requires full electromagnetic
modelling of measurement cells, which is still one of the most
challenging problems in microwave materials metrology.
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