HEADTAIL upgrade new features & options

D. Quatraro, G. Rumolo, B. Salvant thanks to R. Tomás, E. Métral

18 July 2008

< D

Sac

D. Quatraro, G. Rumolo, B. Salvant thanks to R. Tomás, E. Métral HEADTAIL upgrade

Peatures

3 Wake field interaction

4 Latest result for TMCI

5 Conclusion & perspectives

Sac

< D >

Linear Transport

The model

Linear transport through the direct MAD-X output by means of matrices

< D

Sac

Linear Transport

PS<mark>frag replacements</mark>

Linear transport through the direct MAD-X output by means of matrices

< D >

Linear Transport

PS<mark>frag replacements</mark>

Linear transport through the direct MAD-X output by means of matrices

< n

Sac

Reading the TWISS parameters ψ, β, α and the positions s of the elements and building up the matrices for the different points

Linear Transport

PS<mark>frag replacements</mark>

Linear transport through the direct MAD-X output by means of matrices

Reading the TWISS parameters ψ, β, α and the positions *s* of the elements and building up the matrices for the different points

$$\mathcal{M}_{j} = \mathcal{M}\left(\textit{s}_{j+1} | \textit{s}_{j}
ight)$$

< n

Sac

Chromaticity

Momentum spread $p = p_0 + \Delta p$, $\delta = \Delta p / p_0$

990

э

< <p>>

A.

Chromaticity

Momentum spread
$$p = p_0 + \Delta p$$
, $\delta = \Delta p/p_0 \Rightarrow \begin{cases} \beta_j \rightarrow \beta_j + \hat{\beta}_j \delta \\ \alpha_j \rightarrow \alpha_j + \hat{\alpha}_j \delta \\ \psi_j \rightarrow \psi_j + \xi_j \delta \end{cases}$

$$\Delta \psi_{j+1,j} = \delta \, \xi_{j+1,j} \qquad \xi_{j+1,j} = \frac{1}{4\pi} \int_{s_j}^{s_{j+1}} \, ds \, [k(s) - mD(s)] \, \beta(s)$$

< 🗆 > < 🗗 >

5990

글 > - 글

=

Chromaticity

Momentum spread
$$p = p_0 + \Delta p$$
, $\delta = \Delta p/p_0 \Rightarrow \begin{cases} \beta_j \rightarrow \beta_j + \hat{\beta}_j \delta \\ \alpha_j \rightarrow \alpha_j + \hat{\alpha}_j \delta \\ \psi_j \rightarrow \psi_j + \xi_j \delta \end{cases}$

$$\Delta \psi_{j+1,j} = \delta \, \xi_{j+1,j} \qquad \xi_{j+1,j} = \frac{1}{4\pi} \int_{s_j}^{s_{j+1}} \, ds \, [k(s) - mD(s)] \, \beta(s)$$

From MAD-X we get $d/d\delta \ \psi_{j+1,j} = \xi_{j+1,j}$ For the transport

$$\mathcal{M}_{j}^{Chr} = \mathbf{T}_{j+1} \mathbf{R}\left(\psi_{j}\right) \mathbf{R}\left(\Delta \psi_{j+1,j}\right) \mathbf{T}_{j}^{-1} = \mathcal{M}\left(s_{j+1}|s_{j}\right) \mathcal{M}^{\Delta \psi_{j+1,j}}\left(s_{j}|s_{j}\right)$$

< D >

æ

990

э

Peatures

3 Wake field interaction

4 Latest result for TMCI

5 Conclusion & perspectives

Sac

< D >

Choice of the observation and interaction points 1/2

3 options to choose the β function at kick points

 $\beta_{x,y}$ sampled through $[\beta_{\mathit{Inf.}}, \beta_{\mathit{Sup.}}]$

 β randomly distributed over the ring

 β chosen by means of the interaction point

Sac

Choice of the <u>observation</u> and interaction points 2/2

Centroid motion at $\mathsf{BP}(\mathsf{M}/\mathsf{V}/\mathsf{H})$ selected by means of the names

Sac

1 D

Choice of the <u>observation</u> and interaction points 2/2

Centroid motion at BP(M/V/H) selected by means of the names Used to localise the impedance sources...from 1000-turns data

Sac

Choice of the <u>observation</u> and interaction points 2/2

Centroid motion at BP(M/V/H) selected by means of the names Used to localise the impedance sources...from 1000-turns data

Sac

pictures from Rama's talk on May 30th, 2008

Outline

Peatures

3 Wake field interaction

4 Latest result for TMCI

6 Conclusion & perspectives

Sac

< D >

New way to get the wake fields..

The model

hdtl takes the fields from ZBASE $\,\rightarrow\,$ wake field kick

< D

New way to get the wake fields..

The model hdtl takes the fields from ZBASE \rightarrow wake field kick

$$p_j(\Delta t) = p_j(0) + f_j(q_j) \cdot \Delta t \qquad j = x, y$$

with

$$\int_{s_j}^{s_j+\Delta s} ds \, f_j(q_j) = \kappa \left(W_j^{\textit{Dip.}} \hat{q}_j + W_j^{\textit{Quad.}} q_j
ight)$$

–

Sac

being \hat{q}_j the coherent motion spatial coordinate

New way to get the wake fields ..

The model hdtl takes the fields from ZBASE \rightarrow wake field kick

$$p_j(\Delta t) = p_j(0) + f_j(q_j) \cdot \Delta t \qquad j = x, y$$

with

$$\int_{s_j}^{s_j+\Delta s} ds \, f_j(q_j) = \kappa \left(W_j^{\textit{Dip.}} \hat{q}_j + W_j^{\textit{Quad.}} q_j
ight)$$

being \hat{q}_j the coherent motion spatial coordinate

...getting the fields $W_j^{Dip.}$ and $W_j^{Quad.}$ fields for *every* device (source of impedance) directly taken from ZBASE

Sac

hdtl can recognize the lattice structure as well as the different elements

990

hdtl can recognize the lattice structure as well as the different elements

EXAMPLE

\$ hdtl spslattice.dat BPM 3 START MK

<pre>spslattice.dat</pre>	MAD-X output with the TWISS	
BPM	observation at the BPMs	
3	option to choose the eta	
START	place where to start the lattice from	
MK	wake field interaction at every kicker	

< D >

ക

Sac

hdtl can directly access ZBASE

hdtl can recognize the lattice structure as well as the different elements

EXAMPLE

\$ hdtl spslattice.dat BPM 3 START MK

<pre>spslattice.dat</pre>	MAD-X output with the TWISS	
BPM	observation at the BPMs	
3	option to choose the eta	
START	place where to start the lattice from	
MK	wake field interaction at every kicker	

1 D

Sac

hdtl can directly access ZBASE at each element, its own wake field !

Outline of the command from shell

5900

E

< ロ > < 同 > < 글 > < 글 >

Outline of the command from shell

ARG	TYPE	MEANING	DESCRIPTION
1	*char	MAD-X file	lattice structure
2	*char / int	elements name/number	beam observation points
3	int	observation points choice	selecting lattice points
4	*char	first lattice element	detailed bunch
5	*char	wake field interaction points	sources of impedance

5900

E

< ロ > < 同 > < 글 > < 글 >

Link between MAD-X and ZBASE

PSfrag replacements

< D

Link between MAD-X and ZBASE

PSfrag replacements

–

Sac

Outline

Peatures

3 Wake field interaction

4 Latest result for TMCI

5 Conclusion & perspectives

Sac

< D >

Growth rates

We have simulated the interaction of the bunch with the kickers' impedances

990

э

< D >

ക

Growth rates

We have simulated the interaction of the bunch with the kickers' impedances

Mode coupling 1/2

Analysis of the tune vs. bunch intensity

990

3

< D >

ക

Mode coupling 1/2

Analysis of the tune vs. bunch intensity

left(horizontal plane) & right(vertical plane)

D. Quatraro, G. Rumolo, B. Salvant thanks to R. Tomás, E. Métral

HEADTAIL upgrade

Mode coupling 2/2

Comparison between the one kick and the new model

left(horizontal plane) & right(vertical plane)

D. Quatraro, G. Rumolo, B. Salvant thanks to R. Tomás, E. Métral

HEADTAIL upgrade

Outline

Peatures

3 Wake field interaction

4 Latest result for TMCI

Sac

< D >

- hdtl has been successfully interfaced with MAD-X for the linear transport
- hdtl has been successfully interfaced with ZBASE to get the dipolar and quadrupolar components of the wake fields for each element
- SPS kickers impedances: benchmark between the one-kick approximation (using β-weighed fields) and the new code with multiple kicks at their actual locations shows an excellent agreement

~ a ~

• hdtl can do realistic simulations for a single bunch through an arbitrary sequence of known impedances