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Abstract

3-Dimensional Simulation of Single Bunch Collective Effects in
Particle Accelerators

Collective effects due to the impedance of structures along the vacuum cham-
ber of particle accelerators and storage rings can limit their performance by
deteriorating the quality of the beam. In particular in LEP (the CERN Large
Electron Positron collider), transverse impedances are restricting single bunch
currents in the vertical direction, but also - to a somewhat lesser degree - in
the horizontal one. All such previous simulation programs have taken into
account only a single transverse dimension.

The 3-dimensional, single-bunch tracking program TRISIM3D was developed,
based on its predecessor TRISIM. It allows for the effects of wake potentials
in all 3 spatial dimensions, and uses triangular basis functions to represent the
particle distribution. The wake potential tables for those basis functions, used
as input for TRISIM3D, can in general be precalculated with mesh-programs.

The properties of wake potentials in non-axially symmetric structures were
studied intensively. In addition to the dipole wake field, which yields the
major transverse contribution in axially symmetric structures, there is also
a quadrupole component for those which have no axial symmetry. The ma-
jor rotationally non-symmetric contributions in LEP, come from the shielded
bellows, which are installed in the arc-sections, and from the electrostatic sep-
arators, and were computed numerically.

The wake potentials of the LEP structures, which were studied, could only
be calculated for bunch lengths which are too long to be used in TRISIM3D.
Therefore a novel method (“Decomposition Method’) was developed, which
allows to calculate the wake potentials of shorter bunches from those of longer
ones.

Results of 3-D simulations of LEP, including the effects of the wake potentials
for 3-D structures, are presented. The effect of horizontal-vertical coupling in
LEP due to wake potentials was investigated and found to be weaker than that
due to skew quadrupoles and solenoids. The frequency shifts of horizontal and
vertical beam oscillations have a ratio corresponding to measurements, while
the somewhat low absolute values of this tune-shifts are due to the omission
of the resistive wall impedance.



Zusammenfassung

3-Dimensionale Simulation von Kollektiven Effekten von Einzelnen
Bunchen in Ringformigen Teilchenbeschleunigern

Kollektive Effekte durch die Impedanz von Strukturen entlang der Vakuumkam-
mer konnen den Arbeitsbereich von Teilchenbeschleunigern und Speicherrin-
gen begrenzen indem sie die Strahlqualtiat verschlechtern. Im speziellen in
LEP (CERN’s Large Electron-Positron Kollisionsmaschine) beschrénkt die
transversale Impedanz die Intensitat von einzelnen Bunchen in der vertikalen,
aber auch - zu einem etwas geringeren Grad - in der horizontalen Richtung.
Alle vorhergehenden Simulationsprogramme haben nur eine transversale Di-
mension berticksichtigt.

Das 3-dimensionale, Einzel-Bunch, Tracking-Programm TRISIM3D wurde en-
twickelt, basierend auf dem Voargangerprogramm TRISIM. Es beriicksichtigt
die Effekte von Wake-Potentialen in allen 3 raumlichen Dimensionen und ver-
wendet dreieckige Basisfunktionen um die Teilchenverteilung zu beschreiben.
Die Tabellen der Wake-Potentiale fiir diese Basisfunktionen, welche als Eingabe
fuer TRISIM3D dienen, konnen im Allgemeinen mit Mesh-Programmen im Vo-
raus berechnet werden.

Die Eigenschaften von Wake-Potentialen in nicht axialsymmetrischen Struk-
turen wurden eingehend studiert. Zusatzlich zu den Dipol Wake-Feldern,
welche den Hauptbeitrag in transversaler Richtung in zylindersymmetrischen
Strukturen liefern, gibt es auch eine Quadupolkomponente fuer Strukturen
ohne Axialsymmetrie. Die nicht axialsymmetrischen Hauptbeitrage in LEP
kommen von den Shielded Bellows, welche in den Bogensektionen installiert
sind, und von den elektrostatischen Separatoren, und wurden numerisch berech-
net.

Die Wake-Potentiale der untersuchten LEP-Strukturen konnten nur fuer Bunch-
langen berechnet werden, welche zu lang sind um in TRISIM3D direkt verwen-
det zu werden. Deshalb wurde eine neue Methode Entwickelt ( “Decompositon
Method”) welche es erlaubt die Wake-Potentiale kiirzerer Bunche von denen
langerer zu berechnen.

Resultate von 3-dimensionalen Simulationen von LEP, unter Beriicksichtigun
der Effekte der Wake-Potentiale, werden prasentiert. Der Effekt der horizontal-
vertikalen Kopplung durch Wake-Potentiale in LEP wurde untersucht und
wurde gefunden zu kleiner zu sein als jene Kopplung durch Quadrupolen und
Solenoids. Die Frequenzaiiderung der horizontalen und vertikalen Bunchoszil-
lationen hat ein Verhaeltnis iibereinstimmend mit Messungen, wahrend die
etwas niedrigen Absolutwerte dieser Frequenzinderungen auf die Vernachlaes-
sigung der “Resistive Wall” Impedanz zuriickzufueren sind.
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Chapter 1

Introduction

Particle accelerators and storage rings cover a wide range of applications, from
purely scientific to medical and industrial ones. Their layout and operational
energy may differ widely depending on their purpose, but the fundamental
principles of their operation are always the same. Charged particles are moving
in electro-magnetic fields which keep them on the desired trajectory, and RF-
fields provide the energy needed to accelerate them to the design energy. The
particles must be moving in a highly evacuated chamber, in order to avoid
collision with molecules of the rest gas, which could lead to blow-up and beam
loss.

Usually it is of interest to maximise the number of particles in these machine
in order to optimise their performance. Fields are induced by the charged
particles in their environment, which are called wake fields. They limit the
number of particles and can even cause instabilities. In addition to analytical
studies of such collective effects, simulation programs have become a valuable
tool to investigate them, and their dependence on various parameters. Such
studies can be used e.g. to find the optimum working point or to study feed-
back systems. Although many simplifications must be made to construct an
accelerator model which can be studied with simulation techniques, in general
they do not strongly influence the simulation results. The number of structures
in an accelerator is usually too high to consider each of them separately, hence
one concentrates their effects into fewer elements for an appropriate machine
model. Also the number of particles in the accelerator has to be represented
by a smaller number of macro-particles, each one consisting of a large number
of real particles.

The wake fields induced by a bunch result in kicks on the particles which
disturb their trajectories and distribution. An exact solution of this problem
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is not possible in a simulation program, since the numerical computation of
wake potentials is not fast enough to be repeated at every passage of a bunch
through a structure. A possible way to avoid this problem is to expand the
distribution into a suitable set of basis functions for which the wake potentials
can be precalculated. The wake potential of the actual distribution can then
be obtained rapidly from the wake potentials of these basis functions.

An efficient technique to represent the particle distribution by a set of triangular-
shaped basis functions[Sab95a], and the steadily increasing performance of
computer systems made the development of a 3-dimensional simulation pro-
gram practical. In order to take the interaction between beam and its environ-
ment (vacuum chamber components) properly into account, the fields induced
in the various components of an accelerator have to be studied carefully.

The numerical calculation of wake potentials is usually done with mesh - pro-
grams. To describe large 3-dimensional structures with a Cartesian mesh with
sufficient accuracy one needs typically several million mesh cells. One also
should have several mesh lines per characteristic length of the particle distribu-
tion in the longitudinal direction. Due to the limitations of available computer
resources one cannot make the number of mesh cells arbitrary high, which lim-
its the number of mesh cells in the transverse directions which would be needed
to describe the structure with sufficient precision. Also the CPU time for the
calculations has to stay within a reasonable range. Taking these requirements
into account, the computer resources presently available at CERN allow the
calculation of bunch lengths not shorter than 5 mm r.m.s. for Gaussian pro-
files in the various structures of LEP, the Large Electron-Positron collider at
CERN. However, the length of the triangular bunches needed as input for the
simulation program is typically 3 to 6 mm. Since the calculation of their wake
fields would require even smaller meshes than for Gaussian bunches, a novel
method was developed which permits to obtain the wake potentials of shorter
distributions from longer ones. We called this the “Decomposition Method”
which is described in chapter 3.

To understand the fundamental behaviour of wake fields in structures with-
out axial symmetry, a number of some simple geometries have been examined
first: “pillbox” cavities with side tubes of circular, quadratic, elliptic and rect-
angular cross-sections. The wake fields of those 3-dimensional structures were
calculated numerically. The main axially non-symmetric structures of LEP,
which contribute strongly to the impedance, are the shielded bellows with oval
cross section. They have only minor cross section variations, but since they
have a small vertical height, and there are a vary large number of them, they
contribute significantly to the transverse impedance. Another type of element
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without axial symmetry are the electro-static separators consisting of pairs of
parallel plates in large tanks. In order to understand the influence of such
structures on the motion of the particles, their wake fields have been studied
in detail, and the results of these computations are shown in chapter 4.

The 3-dimensional multi-particle tracking program TRISIM3D is based on
its predecessors SIMTRAC[Bra84], HERSIM[Nys87], HERSIM2[Wan90] and
TRISIM[Sab94b, Sabh95a, Sab95b]. The equations of motion used to describe
the motion of the particles are presented in chapter 5. The wake field effects
are included by expanding the particle distributions into triangular shaped
basis functions in all 3 spatial directions. The wake field tables for rotation-
ally symmetric structures have been calculated previously, while those for the
unsymmetric structures, were obtained by the decomposition method. Several
results of applications of the new program TRISIM3D are shown in chapter 6.
However, the main focus of the present thesis is the calculation of wake po-
tentials of non-axially symmetric structures, and their implementation in the
simulation program.



Chapter 2

Collective Effects in Particle
Accelerators

Here we want to give a short overview of the basic dynamics of particles in high
energy accelerators. This field is known as “accelerator physics” and includes
the study of a particle in the electromagnetic fields used to guide and focus the
beams. In particular the effects of non-linearities and resonances can severely
limit the parameter space available. However, in this thesis we are concerned
with the interactions of the particles with others in the same bunch, usually
transmitted through "wake fields” excited by particles of the head of the bunch,
moving with speeds close to light velocity in the surrounding structures. Such
interactions are called “collective effects” since they are due to a large number
of single particles, and in particular "coherent” when their effects are in phase.

2.1 Wake fields, wake potentials, and loss fac-
tors

In this section we will introduce the concept of wake potentials, impedances
and some related quantities, as far as necessary for the understanding of the
present thesis. It is not meant to be exhaustive, for a more detailed and
complete description the reader is refered to the literature [Cha93, KZ97].
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2.1.1 Wake fields and wake potentials

When traversing the vacuum chamber, a particle beam induces electromagnetic
fields wherever the cross-section of the chamber changes. The wake fields of an
ultra-relativistic' bunch can interact with particles of a following bunch or even
with the trailing particles of the exciting bunch itself. In cavity-like structures
the beam will excite resonant frequencies also called resonant modes, which
can cause significant energy loss of the beam.

The field lines in a simple “pillbox” like structure with side tubes, excited
by a bunched beam with a Gaussian longitudinal profile, are shown in Fig-
ure 2.1 for several consecutive time steps, calculated with the mesh-program
ABCI [Chi94]. It is assumed that the walls of the cavity are ideal conductors,
and that the beam travels with the speed of light. In vacuum, the electric field
lines of the beam would be straight lines pointing radially outwards. In the
presence of a conducting boundary, the field lines are distorted towards the
wall.

Due to such wake fields, a trailing particle experiences a force depending on
its spatial position. This wake force F is in general a complicated function of
time and position. For charged particles, which move with a speed near to light
velocity, the trajectory of the average particle motion remains undisturbed by
the wake force. It is therefore useful to introduce the integral over the wake
force along the trajectory.

I
Wi(r,T, s) :/ F(r,T,s,2)dz, (2.1)
0

where s is the longitudinal distance from the exciting charge, and r and T are
the transverse positions of source and test charges.

The integral over the wake force due to fields excited by a point charge or delta
function distribution, normalised by the charge ¢, is called the wake function
Since it is also the Green’s function for the geometry considered, we call it
G(s). The longitudinal wake function Gy is given by

1 00 _
Gi(r.F.5) = /m E.(r,Ft=" - ® 2)dz . (2.2)

! The ultra-relativistic assumption is certainly a reasonable approximation for high energy
electron machines, e.g. in LEP where v/c=1—2.7-10719 at the injection energy of 22 GeV,
and even closer to unity at the higher operational energies.
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Figure 2.1: Electric field lines in a “pillbox” cavity with side tubes, induced
by a passing Gaussian charge distribution.

where F, is the electric field component in direction of the particle propagation.
There is no contribution of the magnetic force, since it is at a right angle to
the direction of the particle motion. The minus sign makes the wake function
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positive when it has a decelerating effect. A trailing particle with charge e
behind a point charge ¢ will experience an energy loss

AFE(s) =eqGy(s). (2.3)

When the exciting charge distribution has a finite length, the longitudinal wake
potential is given by the convolution of the longitudinal wake function with the
normalised line charge density A(s) of the distribution

Wils) = [ Gi(s = 2 (2)dz, (2.4)

The longitudinal wake potential has dimensions V/C.

Analogous to the longitudinal one, the transverse wake function, can be defined
as the integral over the transverse electro-magnetic force along a straight path
at a distance s behind an exciting point charge travelling with constant velocity
VR C

z

Gi(s) = —/ (E +v x B)dz. (2.5)
q J—co

Here E and B are the electric and the magnetic fields, and v the particle

velocity vector. If the transverse wake function is known, the transverse wake

potential can be found as its convolution with the particle distribution.

W (s) = /0 T G5 — A (2)dz (2.6)

Using this definition, the transverse wake potential also has the dimensions
V/C. However, since the transverse wake potential in axially symmetric struc-
tures is dominated by the dipole moment (m=1), it is quite common to redefine
the transverse wake function and potential as normalised by the dipole moment
of the distribution. Their units become then V/Cm.

In rotationally symmetric structures, the transverse wake potentials always
deflect a transversely displaced particle near the source further outwards, its
effect is therefore always defocusing. If a structure is non-axially symmetric,
the transverse wake potential can also have a focusing effect in one of the
transverse directions.
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2.1.2 Loss factor

To simplify the calculation of the energy lost by bunched beams passing
through vacuum chamber components, the concept of a the “loss factor” was
introduced by the definition

ko= ——. (2.7)

Here U is the energy lost by the bunch and ¢ its charge. If the longitudinal
wake potential is given, the longitudinal loss factor can be obtained directly
by integrating the product of the wake potential W)(s) and the line density
A(s) of the charge distribution

k= / Wi (s)A(s)ds. (2.8)

It is measure for the longitudinal energy loss of the charge distribution during
the passage through a structure.

The concept of a loss factor has been generalised to include the change of
energy loss with transverse displacement of the bunch. The transverse loss or
kick factor is defined by

k= / W (5)A\(s)ds. (2.9)

In the following chapters we will often refer to the transverse energy loss of an
offset bunch somewhat losely as transverse loss. The difference is that those
values are not normalised w.r.t. the offset of the beam.

2.1.3 Numerical calculation of wake potentials

The methods to calculate wake fields analytically are limited to a few sim-
plified structures. To obtain the wake potentials induced in real accelerator
structures one has to use numerical methods. There are numerous computer
programs which incorporate these methods. Depending on the geometry of
the structure one has to use 2-D or 3-D programs. An overview over these
programs can be found in the book Impedances and Wakes [KZ97], §11A) and
the compendium about computer programs in accelerator physics by the Los
Alamos Accelerator Code Group [Gro90]. Two basic methods exist to solve
the Maxwell equations numerically. The first one is called Finite Difference
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(FD) Method or Finite Integral Technique (FIT), the second one is the Finite
Element (FE) Method. In both cases the physical problem is reduced to a set
of linear equations which can be solved in an efficient way numerically. Nev-
ertheless, the actual algorithms of the two methods are quite different. Since
presently there are no F'E programs available which allow to calculate transient
time domain problems, i.e. excitation by a traversing charge distribution, all
calculations for this thesis were done using programs based on the FD method.



Chapter 3

Decomposition of Wake
Potentials

3.1 General principle

The calculation of wake potentials of short bunches in large 3-dimensional
structures requires very large computer memories and CPU times and often
even exceeds the available computer resources. A sufficiently accurate descrip-
tion of such 3-D structures leads typically to several million mesh cells. The
size of the mesh steps in the direction of particle propagation can not be chosen
arbitrarily large, but is determined by the bunch length. To obtain accurate
results, about 10 mesh cells per o of the bunch are required. The calcula-
tion of bunch shapes with discontinuities in their derivatives, like triangles,
requires even smaller mesh sizes in the longitudinal direction [Mei97]. Since
the total number of mesh points is limited by the resources, the description of
a structure in transverse direction suffers.

To overcome this limitation, a method was developed which permits to calcu-
late the wake potential of a short bunch from the wake potential of a longer
one. The Ezpansion Method for Calculating Wake Potentials as described
in [WZ89] uses a Hermite polynomial expansion which leads to good results
for the calculation of wake potentials for longer bunches, but cannot be used
to calculate those of shorter bunches. Another possibility would be to work
in frequency domain and to calculate the wake potential of the longer bunch
up to a quite long distance behind the bunch to obtain an accurate Fourier
transform, divide by by the Fourier transform of the bunch and transform back
into the time domain to obtain the wake function. This method requires also
large computer resources, and is of limited accuracy. On the other hand the

10
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decomposition method does not require a long wake potential which saves a
lot of computing time and, with some restrictions, can be used to get an es-
timate of the wake potential of shorter bunches from those of longer bunches.
The frequencies which are excited by a bunch are inversely proportional to
its length. Figure 3.1 shows the frequency spectra of a Gaussian bunch with
o =5 mm and triangular bunches with 10 and 20 ps half-width. The triangu-
lar bunches have somewhat higher frequency content and additional maxima
at higher frequencies. Since a shorter bunch excites those higher frequencies,
the decomposed wake potential calculated from a longer bunch can not contain
this high frequency information.

80T

Frequency Spectra of Distributions

~ —

100 125 150 175 200

Figure 3.1: Frequency spectra of a Gaussian bunch with 0 =5 mm and Trian-
gles with 10 and 20 ps half-width.

Nevertheless, this method is very useful when this high frequency information
is not required, e.g. for the decomposition of longer bunches. Furthermore it
is necessary if the minimum bunch length directly calculable is not sufficiently
small. For the axially non-symmetric structures which will be studied in the
following chapter, i.e. the shielded bellows and the separators in LEP, this
minimum bunch length is presently 5 mm, using a longitudinal mesh step size
of 0.5 mm. This limit was determined by the available computer resources of
~ 500 MByte memory. In the multi-particle simulation program TRISIMS3D,
the triangular basis functions used to describe arbitrary bunch configurations
are typically 10 ps and 20 ps long, which would require even smaller longitudi-
nal meshes than 0.5 mm to obtain numerically accurate results. However, since
these basis functions are used to reconstruct longer bunches in the range of 10
mm and above, the missing high frequency information is not very important.

11
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3.2 Decomposition and Reconstruction

An arbitrary charge distribution can be well approximated by a superposition
of a sufficiently large number of linear (i.e. triangular) basis functions as shown
in Figure 3.2,

Q
A

c3

c2

\j

ds

Figure 3.2: Linear expansion of a charge distribution using triangular
shaped basis functions.

where A is the half-width of the triangles, ds the longitudinal mesh step, and
c1, Co, C3, ... C, are the expansion coefficients of the linear expansion of the
charge distribution. Given the total length [. of the charge distribution, one
needs

+1 (3.1)

n =

le
A

triangular basis functions to describe the distribution. Due to the linearity of
Maxwell’s equations, also the wake potential wy of a Gaussian bunch can be
expressed as a superposition of the wake potentials w; of those triangular basis
functions with the same expansion coefficients. The index n in the following
equations refers to the n-th point of the wake potential, i.e. wf = w9((n—1)ds).

12
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w! = cquwd
wi = cwsy
wgfl = Clwﬁfl (3 2)
wy = quwp + cuwp :
g9 i A A
Wiy = QWi + Cwy
wl, = quws, + CQw(Aﬁ_l)k + -+ i
where the following symbols have been used:
k ... number of wake potential points in a half-width of the trian-
gular basis function (A),
n ... number of triangles used to represent the Gaussian charge dis-
tribution,
c1...¢; ... expansion coefficients of the linear expansion of the Gaussian

charge distribution.

Carrying on this thread, the wake potential of a Gaussian bunch obtained with
a mesh program can be seen as superposition of wake potentials of triangular
charge distributions with a half-width equal to the mesh size in the longi-
tudinal direction. The charge distribution taken into account for wake field
calculations usually extends over a range of £+ 50 where about 10 mesh points
per o is a good value to obtain numerically accurate results. Therefore the
wake potential of the Gaussian charge distribution can be seen as consisting
of the contributions of 100 mesh-step-sized triangles (Fig. 3.3).

13
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Figure 3.3: Linear expansion of a charge distribution using mesh-step sized
triangular basis functions

The equations (3.2) can then be written as (k = 1, ¢, = Ofor k>n, n,...
number of wake potential points )

w{ = cqwd
wg — Cl’U]QA + CleA
g — A A A
w3 = Cwz  + Cowy + c3wi
g — A A A
wﬁ_l = Clwﬁ_l + CQwﬁ_z + * + Cﬁ,—lwl
g — A A A A
wy = Cwy + cwi_ + o +  Ciwy Wy (3.3)
g — A A A A
Wiy = Wi + QWS+ o+ Cpawy + Cws
g — A A A A
wﬂ+2 - Clwﬂ+2 + CQwﬂ+1 + - + Ca—1Wy + Callz
[/ A A - " A CpA
’anp = clwnp + Canpfl + + Cn—lwnpffH»l + annpfﬁ

Sorting by increasing index n of the w; leads readily to

14
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w{ = cquwd

wy = cwd + cuwd

wy = cuwi + cwy + cwi

Wiy = Cp Wi F CioWh + Choswy + -+ i (3.4)
wi{ = cawy + 1wy + chowi + -+ owi  + qwy

wi, = CLWS  + Chogws + -+ Cawi_y + i + cws

which is a linear system of n, equations, where n, is the number of wake
potential points. Defining the vectors

A
g — 9 .09 g — A A A
w —(wl,wZ,---,wnp), w —(wl,wQ,---,wnP), (3.5)

where w#& is the wake potential of the Gaussian charge distribution and wo
is the one of the triangular basis function, on can write the equations (3.4) in
matrix form as

A

weE=C -w (3.6)
where the following matrix of coefficients C has been introduced:
cy 0 0 0 0 0 O
Cy C1 0 0 0 0 0
3 G cq 0 0 0 0
0 0 0 O
C = Cp Ch—1 Cp—2 s C1 0 0 0 (37)
0 Cp Ch—1 Cp—2 s C1 0 0
0 0 Ch Ci1 Cho -+ ¢ O
0 0 0 Ch Ch1 Ch9 -+ C

15
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The wake-potential of this mesh-sized triangular interpolating function is then
obviously given by

A

w =Cl. w8 (3.8)

To calculate the wake potential of a second charge distribution one simply has
to multiply the wake potential of the mesh-sized triangle with the matrix D
of the expansion coefficients of the new distribution

A

wt=D w . (3.9)

The calculation of C™! (the inverse of C) might lead in practice to numeri-
cal problems, due to the factor ¢; " in the calculation of the inverse Matrix.
Therefore a recursive formula following directly from Eqn. (3.4) is better suited
for application of the decomposition method.

1 n
i, = — (wz - o w) (3.10)
k=2

&1

In fact this form is much better suited for implementation in a program. Nev-
ertheless there are still some numerical constraints which one has to take into
account.
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3.3 Numerical considerations

To optimise the calculation of the inverse of the matrix C one can take advan-
tage of the properties of C. The coefficients ¢, of the matrix C are defined by
the magnitude of the Gaussian distribution at the positions of the mesh lines,

(n—1)dz —i,0)?

e 207 : (3.11)

Cp =
2mo

where dz is the mesh-size in longitudinal direction and i, is half the length
of the distribution in units of o. These coefficients extend over several orders
of magnitude. The ratio of maximum to minimum coefficient is given by the
relation

Cma:v

[\ |q®[\3

= 3.12
e, (312)

and depends only on the value of i,. The matrix C for a Gaussian bunch (o =5
mm) is shown in Figure 3.4, where the hatching indicates regions outside the
+ 5 o range of the charge distribution, where the coefficients ¢,, are zero by
definition.

Figure 3.4: Matrix of coefficients C for a ¢ = 5mm Gaussian bunch and a
longitudinal mesh step size of ds = 0.5 mm.
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Chapter 3 Decomposition of Wake Potentials

The inverse matrix of this triangular matrix is again a triangular matrix and
the components ¢, of this matrix can be calculated using the recursive relation

1 1 n—1
1 = — Cp = —— Z(Ek . Cn—k-i—l) for n > 2. (313)
(4] C1 k=1

The order of the coefficients of the matrix C~! is the same as for C. Their
absolute values for a Gaussian bunch with ¢ =5 mm are shown in Figure 3.5.
The vertical scale of this plot is pseudo-logarithmic, i.e. the logarithm of the
absolute values are multiplied by the sign of the original value.

+1E75 ‘ Coefficients of Matrix C*t

+1E50 | qﬂﬂ“ﬂ

H; +1E25O UnunuﬂuﬂﬂHHHHHHHHH

e UL
_1E507ds:0.5mm UMUUUMULJ
-1E75 71 o = 5.0 mm 1
100 200 300 400 500

Figure 3.5: Logarithmic plot of the coefficients of the inverse matrix C~* for
a Gaussian bunch (¢ = 5 mm).

The values of the coefficients ¢, extend over many orders of magnitude and
show a strong exponential growth with the index n. This growth leads to
numerical problems when the inverted matrix is used to calculated the wake
potential of the short triangle. In order to avoid errors due to differences of
very large numbers one has to know the original wake potential with a very
high numerical precision in the order of hundred digits, which is nowadays
practically not possible to obtain.

One way to circumvent this difficulty is to suppress the first part of the wake
potential. This corresponds also to a suppression of the first part of the charge
distribution, where the density is very low anyhow. The index of the first
point of the distribution taken into account will be refered to as start-index
ng of the decomposition. A shift of the start-index to values ng > 1 reduces
the ratio ¢4 /¢ of the matrix coefficients and the exponential growth of the
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coefficients of the inverse matrix C~! becomes smaller. Figure 3.6 shows the
maxima of the absolute values of the coefficients ¢, for different values of the
start-index ng. For a ¢ =5 mm Gaussian bunch and a longitudinal mesh step
size of ds = 0.5 mm, the variation is smallest for values of ny between 30 and
35. The impact of the reduction of the length of the charge distribution is
that the first ny points of the wake potential are ignored. This leads to a few
percent loss of accuracy as will be shown for the examples in the next section.

80
Exponential growth of coefficients
60r
—~ 40}
-
L 20}
4
© 0
g
9 -20t
_40,
100 200 300 400 500
50 Exponential growth of coefficients
~ 2.5} No=30/
—
IU 0 ng=31
0]
% 2.5 ng=32]
o)) n0=33
3 s |
n0=34
-7.5 1
ng=35

100 200 300 400 500 600

Figure 3.6: Logarithmic growth of the coefficients of the matrix C~! for a
Gaussian bunch (o0 = 5 mm) as function of the start-index n.
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3.4 Applications of the Decomposition Method

3.4.1 Example Pillbox Cavity

The decomposition of wake potentials will be tested first on a simple circular
cylindrical “pillbox” cavity. This geometry was chosen to allow a fast calcu-
lation of the wake potentials for various bunch lengths. The geometry of this
test-structure is shown in Figure 3.7.

x/mm | x/mm

A
z/mm // \\ y/mm
N
120
120 120 120 240

4

Figure 3.7: Geometry of the “pillbox” cavity with side tubes.

The impedance of this structure does not contain strong high frequency compo-
nents and is therefore well suited for a first test of the decomposition method.
The wake potentials for Gaussian bunches of various lengths (o = 40, 20, 10, 5
mm) and for triangular bunches with 10 and 20 ps half-width were calculated
using ABCI[Chi94]. As a measure of the accuracy of the decomposition and
reconstruction the following 3 quantities are used:

e Relative error of loss-factor
kg,O — kg,r

Ak = (3.14)
kg0
e Relative maximum local error
AwmlT‘ — maX(Wg’O(S) - Wg,r(s)) (315)

max(w80(s))
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e Relative integrated error

e |16 =Wl ds
w =
[ tweo(s)lds

(3.16)

The relative error of the loss-factor is the difference between the loss-factors
calculated from the reconstructed and directly calculated wake potential, nor-
malised by the value of the latter. This error is a measure for the precision
of the short range wake potential, while the following two errors weight the
hole calculation range. The relative mazimum local error is defined as the
maximum difference of the two wake potentials normalised by maximum value
of the directly calculated one. The relative integrated error refers to the area
between the two wakes wrt. the integral of the absolute value of the directly
calculated wake.

The wake potential for the mesh-sized (dz = 0.5 mm) triangular distribution'
calculated from the wake potential of a 0 = 5 mm Gaussian bunch is shown in
Figure 3.8 for ng = 1. The exponential growth of the coefficients of the inverse
matrix C~1, mentioned in the previous section, induces the exponential growth
of the basis wake, which can be seen clearly.

If one chooses the numerical precision high enough, e.g. about 100 digits for
600 wake potential points, the error of the reconstruction of the original wake
potential remains insignificant, i.e. well below the accuracy of the original wake
potential (Fig. 3.9).

On the contrary, the reconstruction even of longer charge distributions fails
completely for ng = 1 (Fig. 3.10). This can be understood by taking into
account the exponential growth of the elements of the inverted matrix (see
previous section). Due to this growth the first points of the original wake
potential are weighted the stronger the longer the reconstructed wake potential
gets.

A shift of the starting point ng of the decomposition reduces the exponential
growth of the basis-wake of the mesh-step-sized basis-function and therefore
also the reconstruction of wakes for longer bunch lengths converges. The errors
of the reconstruction - defined in Eqns. (3.14)-(3.16) - are shown in Figure 3.11

! The wake potentials of these mesh-sized triangles will be refered to as basis-wake of the
decomposition and the symbol wi:*' will be used (ng refers to the start-index and bl to the
bunch length from which the basis-wake was derived, e.g. g5 ...Gaussian bunch with 0 =5
mm).
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‘ Pillbox Cavity, Basis Wake Potential |
] N
= Dt
e LU0
12: U%Uhdw:

s/m

Figure 3.8: Basis-wake Wake potential of 0.5 mm mesh-sized triangular dis-
tribution calculated from the wake potential of a 5 mm Gaussian

bunch.
1 ‘ Pillbox Cavity, sigma = 5 mm |
0.5
[9)
o
~
> 0
~
—
3
0.5
Error of Loss : 2.02E-13 %
Max.Local Error: 2.02E-7 %
-1 Integr. Error : 3.34E-9 %
0.05 0.1 0.15 0.2 0.25 0.3
s/m

Figure 3.9: Accuracy of reconstruction (numerical precision = 200, ny = 1).

for a Gaussian bunch (0 = 5 mm) as function of the start-index ny, i.e the
first wake potential point taken into account.

The minima of the maximum local and the integrated errors occur, as can be
expected from the numerical considerations, between ny ~ 30 — 35 while the
error of the loss-factor has its minimum already at ng ~ 20. The same depen-
dence of the errors on the start-index can be found for other bunch lengths.
The reason for the different minima of the errors is the loss of information
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0 I N N N N N . .
0.75 Pillbox Cavity, sigma = 10 mm, n0 = 1
0.5
__0.25
@) .
o1 4 N
Ry N
> 0
~ \ ’
:—3! I
-0.25 \ 4 (T
;
o5 N Error of Loss : -2.14El6 %
o Max.Local Error: 8.82E83 %
_0.75 Integr. Error : 9.41E81 %
0.05 0.1 0.15 0.2 0.25 0.3
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Figure 3.10: Wake potential of a 10 mm Gaussian bunch reconstructed from
w1 % i.e. derived from a o= 5mm Gaussian bunch for ny = 1.
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Figure 3.11: Errors of the wake potential of a Gaussian bunch (o =5 mm)
(reconstructed from basis-wake wp° derived from the same
Gaussian bunch) as function of the start-index ny.

due to the shift of the start-index.? For wake potentials which contain not
too high frequency components the error of the loss-factor for start-indices ng
around 30 — 35 is still sufficiently low. The reconstructed wake potentials and
their errors for various bunch lengths, calculated from the basis wake wg#° are
shown in Figure 3.12. The accuracy of the reconstructed wake potentials of
the Gaussian bunches is within a few per-cent. Also the accuracy of the wake
potential of the 20 ps triangle is still acceptable, while the one of the 10 ps
triangle has already errors well above 10%.

20ne can improve the accuracy of the decomposition by linear combination of basis-
wakes derived for different start-index ng. This will be applied in the next example (§3.4.2:
example shielded bellows.)
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Figure 3.12: Wake potentials of Gaussian bunches (0=5, 10, 20,40 mm) resp.

triangular bunches (10,20 ps) reconstructed from the basis wake wg;

B,g5

(—)

compared with directly computed wakes (- - -).
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3.4.2 Example Shielded Bellows

As a next application example of the decomposition method an elliptic model of
the LEP shielded bellows will be used. The details of the geometric properties
of this structure are described in section 4.4.2. To test the accuracy of the
decomposition the directly computed wakes of Gaussian bunches (o = 5,10
mm) will be used. Both wake potentials and the loss factors are shown in
Figure 3.13. The basis-wake will be derived from the 5 mm Gaussian bunch.

VAC! | shieldedBellows - EllipticModdl | | vpc| | ShieldedBellows - EllipticModel |

010 |

002 |

0.05 |

0.00 . 0.00
-0.05 | 002
0101 Long. Wake Potential |~ | Long. Wake Potential

' sigma=5mm sigma= 10 mm
015} k= -3764vnc || ~004; Kl = -9.75V,nC
005 01 015 02 025 005 01 015 02 025
m m

Figure 3.13: Longitudinal wake potentials of Gaussian bunches.

The reconstruction of wake potentials from the basis-wake for varying initial
shift ny results in a large difference between the minima of the errors of the
loss factors and the maximum local resp. the integrated errors (Fig. 3.14).

Loove - | Shielded Bellows - Eliptic Modd | | o0 | | Shielded Bellows - Elliptic Modd |
[ [ .-
50% - \ o B0 | L
N T \\‘ /_/:;(’///
0% e 0% Lo o
509 | Docomposition Errors: _50% [| Docomposition Errors:
L oss Factor Loss Factor
-100% 1| - - - Integrated . _100% 1| - - - Integrated _
——————— Max. Local sigma=5mm ------- Max. Locd sigma= 10 mm
20 25 30 35 40 45 20 25 30 35 40 45

n

n

Figure 3.14: Errors of the wake potentials of Gaussian bunches (o =5, 10
mm) as function of the start-index ng reconstructed from the

B,gb

basis-wake w5

As for the pillbox cavity, the minima for the errors of the loss factors occur
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for lower values of ng than the minima of the integrated and maximum local
errors. The information lost due to the shift of ny causes this difference in
the positions of the minima. While for the pillbox cavity the errors of the loss
factors remained still quite low when exceeding the optimum value of ny, these
errors become now quite big for the bellows. As can be easily seen, there is
no satisfying compromise concerning all errors by simply varying the starting
point ng. Either the error of the loss factor or the integrated error and the
maximum local error become too big (Fig. 3.15). Furthermore, the individual
optimum values are different for different bunch lengths, which makes the
obtained basis-wakes not very applicable for the reconstruction of arbitrary
distributions. One would have to recalculate the basis-wake every time with
ngy adjusted to the actual bunch length.

VACE [ shielded Ballows - Elliptic Model VACE I shielded Bellows - BllipticModel |
010} 010 |
oost [}l 0.05 |
0.00 AL 0,00 '
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Error of Loss 0.06% ‘ Errorof Loss  -10.93%
-010 Integrated Error  6E18% -010 ! Integrated Error  10.04%
-015 _sigma= 5mm)||| Max Lol Error 3EAM[ 015  sgma- 5mm | Max Locd Eror 1251%
005 01 015 02 025 005 01 015 02 02
m m
VAC| | shidded Bellows - Elliptic Modd VAC| | Shidded Bellows - Elliptic Modd
002 | i 002 |
0.00 ISR e F 0,00

Reconstruction: ng = 24.
-0.02 - Errorof Loss  -267%| ~992© Error of Loss  -18.06%

r Integrated Error  6E15% r \ Integrated Error  5.03%
-0.04 - sigma= 10 mm Max. Local Error 7E16% || -0.04 - siéma: 10 mm | Max. Loca Error  8.39%

005 01 015 02 025 005 01 015 02 025
m m

Reconstruction: ng = 31.

Figure 3.15: Reconstructed wake potentials for the start-index ny optimised
with respect to the different errors (left side: minimum error
of loss factor, right side minimum error for long range wake
potential).

The early part of the wake potentials can be better described using basis-wakes
with lower ny while the long range parts of those wakes demand a somewhat
higher ny. This general behaviour makes it self-evident to try to combine
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different basis-wakes (obtained for different start-index ng) in a proper way.
Linear and higher order combinations of various basis-wakes were studied. The
results obtained with linear combination of basis-wakes were found to give the
best results. Using the following linear combination function f,

n—1

fc(na ncomb) = for n < Neomb
Tvcomb (3.17)
fc(na ncomb) = 1 for n. > Ncomb
two basis-wakes, wp-*' and wp:*', are combined as follows
Weomb (1) = (1= fe(1; nicomp)) W™ (n) + fe(n, ncomp) Wi (n), - (3.18)

up to the combination length n.ymp, i.e. the linear combination starts at the
first point, where the basis-wake obtained for the lower values of ny has full
strength and ends at ng,, where only the basis-wake with higher ny con-
tributes anymore. The dependence of the errors on this combination length
Neomp Can be seen in Figure 3.16.

20% || Shielded Bellows - Combination ng=30&35 || 30% | shielded Bellows - Combination n=308:35 |

0 0%
10% - 1% o , g
= % e
0% N
-10%
Reconstruction Errors: _onos || Reconstruction Errors:
-10%¢ Loss Factor 20% Loss Factor
- - - Integrated -30% | - - - Integrated
-20% Max. Local sigma=5mm | _agl| - Max. Local sigma= 10 mm
20 40 60 80 100 20 40 60 80 100
Neomb Neomb

Figure 3.16: Errors of the reconstructed wake potentials of Gaussian
bunches (0 =>5,10 mm) as function of the length ..y, of the
linear combination of the basis-wakes wgg® and wg°.

The integrated and the maximum local errors show a flat minimum for com-
bination lengths around 7.y, = 30 to 40. The errors of the loss-factors are
also sufficiently low in this region. The resulting reconstructed wake poten-
tials for three bunch lengths and the basis-wake used to obtain these potentials
are shown in Figure 3.17. The basis-wake potential was derived by a linear
combination of the basis-wakes for starting values ng = 30 and ng = 35 up
to a distance of ngymy = 36 points from the beginning of the first basis-wake
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potential. The values of the errors for all 3 bunch lengths remain sufficiently
low. Since the combination of basis-wakes leads to a significant improvement,
this method will be applied for all upcoming applications of the decomposition
method, i.e. decomposition of 5 mm Gaussian bunches to derive the wake po-
tentials of 10 and 20 ps triangles, which will be used in the simulation program
TRISIM3D.

VAC == — VAC [T o —
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o o m
0.00 N —{ 0.00 ==
L Reconstruction : Neomp=36f| _g o1 L \/ Reconstruction : Ngomp=36
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Figure 3.17: Combined basis-wake and reconstructed wake potentials of
Gaussian bunches with o = 5,10,20 mm (—) compared with
directly computed wake potentials (- - -)

3.4.3 Example Pillbox Cavity (II)

The combination of basis-wakes was successfully introduced to minimise the
otherwise large errors of the decomposition for the shielded bellows. Since the
improvement was quite significant it will now be also applied to the pillbox
cavity of §3.4.1. The combination basis-wake used for the pillbox cavity was
derived using the same parameters as those used in the previous section i.e.
a linear combination of wig® and w5£° up t0 neemy = 36. Comparison of the
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resulting errors with those of the decomposition without combination of basis-
wakes (Fig. 3.12) indicates a substantial improvement. The wake potentials
of several Gaussian bunches (0=5,10, 20,40 mm) and 10 resp. 20 ps triangles
were reconstructed using this combination basis-wake potential (Fig. 3.18).
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Figure 3.18: Pillbox Cavity - Wake potentials for Gaussian and triangular
bunches derived from the combined basis-wake wggf35(— — —)
, compared with directly computed wakes (- - -).

At the same time, the short range as well as the long range precision are
very good for all longer bunches. The maximum local and integrated errors
are around 5% and the errors of the loss factors are smaller than 3%. For
the shorter, triangular bunches the situation is not quite as good. For the
20 ps triangle the max. local error still exceeds 10% and the same error for
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the 10 ps triangle reaches almost 20%. But these are peak values and the
integrated errors for both triangles are already better and the errors of the
loss factors have values below 7% resp. 4%, i.e. much better than before.
Anyway, these wake potentials will be used in TRISIM3D to reconstruct bunch
distributions having a typical length of 10 mm and longer. Since there is
practically no loss of precision when expanding the actual distribution with
triangular basis functions, the errors of the decomposition for the 10 mm and
20 mm Gaussian bunches are more relevant. To emphasise this statement the
wake potentials of these two bunch lengths were reconstructed using the 10
resp. 20 ps triangular wakes which were derived from the combined basis-wake
(Fig. 3.19). There is certainly no significant increase of the errors compared
to the direct reconstruction of these wake potentials from the basis-wake.
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Figure 3.19: Wake potential of Gaussian bunches by superposition of trian-
gular wake potentials resulting from decomposition, compared
with directly computed wakes (- - -).
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Chapter 4

Wake Potentials of
3-Dimensional Structures

4.1 Structures with Symmetry Planes

Most of the rotationally unsymmetric vacuum components used in accelera-
tors have two, or at least one, symmetry planes. In the calculation of wake
potentials this fact can be used to reduce the computational effort by limiting
the calculation to only a part of the structure.

y
I

x-boundary

%\\\\\\\\\\\\\\\\\\\\\\\\\\\\k\\\\\\\\\\\\\\\\\\\\\\
.
%

W

Figure 4.1: Image charges due to the transverse boundary conditions in a 3-
dimensional structure with 2 symmetry planes.

When a structure has such symmetry planes only half or a quarter of it are
needed for wake field calculations. The boundary conditions of the fractional
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part need to be defined, and the resulting wake potentials must be combined
properly.

When one uses only a quarter of a structure, there are naturally 4 possible
arrangements of the electric resp. magnetic boundaries of the model. The
image charges due to these boundary conditions, induced by a charge with
non-zero horizontal and vertical offset are shown in Figure 4.2. These image
charges also induce fields in the structure and have therefore to be taken into
account.
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Figure 4.2: Image charges for the 4 combinations of electric and magnetic
boundary conditions for a structure with 2 symmetry planes.

For the case of a non-zero beam-offset in both transverse directions this leads
to the necessity of 4 independent calculations as shown in Figure 4.2. The
results of the individual calculations can then be combined to get those for the
full structure. If either the horizontal or the vertical beam offset is zero, only
2 calculations are needed, since the other boundary configurations yield no
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contribution (Fig. 4.1). For an on-axis beam only the case with two magnetic
boundaries has to be considered.

The combinations of the boundary conditions which lead to non vanishing
fields are listed in the Table 4.1, where the corresponding combination of the
wake potentials are also shown.
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Figure 4.3: Image charges for vanishing horizontal resp. vertical beam-offset in
a structure with 2 symmetry planes.

beam offset xy boundaries combination for
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>0 >0 |[#0]|#£0]#0| #0 || w=(Wee + Werm + Wine + Wpnm) /4
=0 >0 ||=0]|#0|=0]|#0 W = (Wem + Winm) /2

>0 =0 ||=0|=0]#0]| #0 w = (Wime + Wim) /2

=0 =0 ||=0[=0|=0|#0 W = Wpm

Table 4.1: Combination of wake fields for different beam positions.

The results of the calculations with the full and the quarter structure for
a cylindrical “pillbox” cavity with side-tubes are compared in Table 4.2. As
expected, the agreement between full and quarter structure is very good. How-
ever, if one uses only part of a structure the post-processing effort increases,
since one has to combine the resulting wake potentials resp. loss factors after
the actual wake potential computation.

The wake potentials for transverse beam offsets which are outside the consid-
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ered section can be obtained directly from symmetry considerations. Consider
a beam offset of (z4,y,): The longitudinal wake potential for beam offsets
of (£z,,+y,) has the same magnitude and sign as the one for (z,,y,). The
transverse wake potentials have to be multiplied by the sign of the correspond-
ing offset, e.g the vertical wake potential changes its sign for negative vertical
beam offsets, while it is independent of the sign of the horizontal offset.

Except for the 4 basic geometries, described in the next section, for which
models of the full structures have been used!, all structures investigated in
later sections were computed taking advantage of their symmetry properties.
This allows a more accurate modelling of the transverse profile, because for a
given length of the traversing charge distribution, the longitudinal mesh size
cannot be chosen arbitrary small, since one has to use several mesh-lines per
r.m.s. length. For a given maximum number of total mesh-points, which is
determined by the available computer resources, the transverse shape of the
structure can be described more accurately using the symmetry properties of
a structure, which leads to a better accuracy for the wake potentials.

! The size of the meshes for those full structures of those basic geometries are rather small.
Therefore it was found advantageous to avoid the additional book keeping effort required
for fractional meshes.
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Chapter 4 Wake Potentials of 3-Dimensional Structures

4.2 Basic Geometries

To understand the fundamental properties of wake potentials in 3 dimensional,
non-rotationally-symmetric structures, four basic geometries were investigated.
These structures are simple cavities with circular, quadratic, elliptic and rect-
angular cross-sections. The horizontal-to-vertical axis ratio of the elliptic and
the rectangular cavity was chosen to be 2. The geometrical parameters are
shown in Figure 4.4, the length of the cavities is 100 mm and the fields are
excited by a Gaussian charge distribution with ¢ = 20 mm.

/mm /mm
A 4 A 4
//\\ x/mm x/mm
\\_// Nc~—— | —
70 140
140 280
/mm /mm
A 4 A 4
x/mm x/mm
70 140
140 280

Figure 4.4: Basic geometries of “pillbox” cavity with side-tubes.

All wake field calculations for these and for the 3-dimensional structures in the
following chapters were done with MAFIA[CST96] module T3 (3-dimensional
time domain solver). The charge distribution used as excitation is shaped
like a needle i.e. has no transverse extension. Therefore also higher multipole
moments of the electromagnetic fields are excited. However, only the lowest
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order field components yield significant contributions. This can be shown easily
for axially symmetric structures, where the effects of the wake fields scale like
(b/a)*™ for the longitudinal and like (b/a)*™! for the transverse case. Here a
is the beam offset, b the beam pipe radius and m the order of the multipole
component ([Cha93],§2.2).

The calculations were done for a number of horizontal and vertical offsets
of the charge distribution. Depending on the number of offsets in the two
transverse directions, one can calculate several multipole components of the
resulting fields.
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4.2.1 Circular Cross-Section

The geometry of the circular cavity is shown in Figure 4.5, and the parameters
of the calculations are listed in Table 4.3. The longitudinal and transverse
energy loss of a Gaussian beam for those beam-offsets are listed in Table 4.4
(page 39), and their graphical representations are shown on pages 40 and 41.

Figure 4.5: Cavity with circular cross section

Circular Cavity
radius 70 mm
length 100 mm

Beam-pipe
radius 35 mm
Zin 100 mm
Zout 100 mm
Beam
o 20 mm
total +50
offset | +£0,2.5,...10mm

Table 4.3: Geometric properties
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horizontal energy loss vs. transverse beam offset [V /nC]

offset X [mm]

y[mm] || -10.] -75] 5.] 25] 0] 25| 5] 75] 10
10. || -77.07 | -55.94 | -36.46 | -17.99 0| 17.99 | 36.46 | 55.94 | 77.07
7.5 || -74.18 | -53.86 | -35.11 | -17.33 0] 1733 | 35.11 | 53.86 | 74.18
5. || -72.17 | -52.44 | -34.19 | -16.88 0| 16.88 | 34.19 | 52.44 | 72.17
2.5 || -70.98 | -51.6 | -33.66 | -16.61 0| 16.61 | 33.66 51.6 | 70.98

0 || -70.59 | -51.32 | -33.48 | -16.53 0| 16.53 | 33.48 | 51.32 | 70.59
-2.5 | -70.98 | -51.6 | -33.66 | -16.61 0| 16.61 | 33.66 51.6 | 70.98
-0, || -72.17 | -52.44 | -34.19 | -16.88 0| 16.88 | 34.19 | 52.44 | 72.17
-7.5 || -74.18 | -53.86 | -35.11 | -17.33 0| 1733 | 35.11 | 53.86 | 74.18
-10. || -77.07 | -55.94 | -36.46 | -17.99 0| 1799 | 36.46 | 55.94 | 77.07
vertical energy loss vs. transverse beam offset [V /nC]
offset X [mm)]

y [mm] -10.] 75 ] 5[ -25] 0] 25] 5] 75] 10
10. 77.07 | 7418 | 7217 | 7098 | 70.59 | 70.98 | 72.17 | T74.18 | 77.07
75| 55.94 | 53.86 | 52.44 51.6 | 51.32 51.6 | 52.44 | 53.86 | 55.94
d. 36.46 | 35.11 | 34.19 | 33.66 | 33.48 | 33.66 | 34.19 | 35.11 | 36.46
2.5 1799 | 17.33 | 16.88 | 16.61 | 16.53 | 16.61 | 16.88 | 17.33 | 17.99

0 0 0 0 0 0 0 0 0 0
-2.5 || -17.99 | -17.33 | -16.88 | -16.61 | -16.53 | -16.61 | -16.88 | -17.33 | -17.99
-9. || -36.46 | -35.11 | -34.19 | -33.66 | -33.48 | -33.66 | -34.19 | -35.11 | -36.46
-7.5 || -55.94 | -53.86 | -52.44 | -51.6 | -51.32 | -51.6 | -52.44 | -53.86 | -55.94
-10. || -77.07 | -74.18 | -72.17 | -70.98 | -70.59 | -70.98 | -72.17 | -74.18 | -77.07
longitudinal loss factor vs. transverse beam offset [V/nC]
offset X [mm]

y [mm] -10. [ 75 5] 25 0] 25] 5.1 75] 10
10. || 2334 | -227.7 | -223.7 | -221.3 | -220.5 | -221.3 | -223.7 | -227.7 | -233.4
75 || 2277 | -222.1 | -218.2 | -215.8 | -215.1 | -215.8 | -218.2 | -222.1 | -227.7
o. || -223.7 | -218.2 | -214.3 | -212. | -211.2 | -212. | -214.3 | -218.2 | -223.7
2.5 | -221.3 | -215.8 | -212. | -209.7 | -208.9 | -209.7 | -212. | -215.8 | -221.3

0 || -220.5 | -215.1 | -211.2 | -208.9 | -208.1 | -208.9 | -211.2 | -215.1 | -220.5
-2.5 || -221.3 | -215.8 | -212. | -209.7 | -208.9 | -209.7 | -212. | -215.8 | -221.3
-5, || -223.7 | -218.2 | -214.3 | -212. | -211.2 | -212. | -214.3 | -218.2 | -223.7
-7.5 || -227.7 | -222.1 | -218.2 | -215.8 | -215.1 | -215.8 | -218.2 | -222.1 | -227.7
-10. || -233.4 | -227.7 | -223.7 | -221.3 | -220.5 | -221.3 | -223.7 | -227.7 | -233.4

Table 4.4: Longitudinal and transverse energy loss vs. transverse beam offset
for a Gaussian bunch (o = 20 mm) for a pillbox cavity with circular
cross-section.
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Figure 4.6: Circular cavity: vector- & contour-plot of transverse energy loss
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Figure 4.8: Circular cavity:
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Figure 4.9: Circular cavity: horiz. and vert. energy loss (contour)
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Figure 4.10: Circular cavity: longitudinal energy loss (3-D & contour)
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4.2.2 Quadratic Cross-Section

The geometry of the quadratic cavity is shown in Figure 4.11, and the parame-
ters of the calculations are listed in Table 4.5. The longitudinal and transverse
energy loss of a Gaussian beam for those beam-offsets are listed in Table 4.6
(page 43), and their graphical representations are shown on pages 44 and 45.

Figure 4.11: Cavity with quadratic cross section

Quadratic Cavity
width 70 mm
length 100 mm

Beam-pipe
width 35 mm
Zin 100 mm
Zout 100 mm
Beam
o 20 mm
total +50
offset | £0,2.5,...10mm

Table 4.5: Geometric properties
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horizontal energy loss vs. transverse beam offset [V/nC]

offset X [mm)]

y [mm] -10.] 75 ] 5[ -25] 0] 25] 5] 75] 10
10. || -57.51 | -40.27 | -25.53 | -12.38 0] 1238 | 25.53 | 40.27 | 57.51
7.5 | -61.66 | -43.36 | -27.58 | -134 0 13.4 | 27.58 | 43.36 | 61.66
5. || -64.59 | -45.56 | -29.04 | -14.13 0| 14.13 | 29.04 | 45.56 | 64.59
2.5 || -66.34 | -46.87 | -29.92 | -14.57 0| 14.57 | 29.92 | 46.87 | 66.34

0 || -66.93 | -47.31 | -30.21 | -14.71 0| 14.71 | 30.21 | 47.31 | 66.93
-2.5 || -66.34 | -46.87 | -29.92 | -14.57 0| 1457 | 29.92 | 46.87 | 66.34
-5. || -64.59 | -45.56 | -29.04 | -14.13 0| 14.13 | 29.04 | 45.56 | 64.59
-7.5 || -61.66 | -43.36 | -27.58 | -134 0 13.4 | 27.58 | 43.36 | 61.66
-10. || -57.51 | -40.27 | -25.53 | -12.38 0| 12.38 | 25.53 | 40.27 | 57.51
vertical energy loss vs. transverse beam offset [V /nC]
offset X [mm)]

y [mm] -10.] 75 ] 5[ -25] 0] 25] 5] 75] 10
10. || 57.51 | 61.66 | 64.59 | 66.34 | 66.93 | 66.34 | 64.59 | 61.66 | 57.51
7.5 | 40.27 | 43.36 | 45.56 | 46.87 | 47.31 | 46.87 | 45.56 | 43.36 | 40.27
d. 25.53 | 27.58 | 29.04 | 29.92 | 30.21 | 29.92 | 29.04 | 27.58 | 25.53
2.5 12.38 13.4 | 14.13 | 14.57 | 14.71 | 14.57 | 14.13 13.4 ] 12.38

0 0 0 0 0 0 0 0 0 0
-2.5 || -12.38 | -13.4 | -14.13 | -14.57 | -14.71 | -14.57 | -14.13 | -13.4 | -12.38
-5. || -25.53 | -27.58 | -29.04 | -29.92 | -30.21 | -29.92 | -29.04 | -27.58 | -25.53
-7.5 || -40.27 | -43.36 | -45.56 | -46.87 | -47.31 | -46.87 | -45.56 | -43.36 | -40.27
-10. || -57.51 | -61.66 | -64.59 | -66.34 | -66.93 | -66.34 | -64.59 | -61.66 | -57.51
longitudinal energy loss vs. transverse beam offset [V/nC]
offset X [mm]

y [mm] -10. [ 75 5] 25 0] 25] 5.1 75] 10
10. || -231.1 | -226.1 | -222.7 | -220.7 | -220.1 | -220.7 | -222.7 | -226.1 | -231.1
7.5 || -226.1 | -220.7 | -217.1 | -214.9 | -214.2 | -214.9 | -217.1 | -220.7 | -226.1
5. || -222.7 | -217.1 | -213.2 | -210.9 | -210.1 | -210.9 | -213.2 | -217.1 | -222.7
2.5 || -220.7 | -214.9 | -210.9 | -208.5 | -207.8 | -208.5 | -210.9 | -214.9 | -220.7

0| -220.1 | -214.2 | -210.1 | -207.8 | -207. | -207.8 | -210.1 | -214.2 | -220.1
-2.5 || -220.7 | -214.9 | -210.9 | -208.5 | -207.8 | -208.5 | -210.9 | -214.9 | -220.7
-5, || -222.7 | -217.1 | -213.2 | -210.9 | -210.1 | -210.9 | -213.2 | -217.1 | -222.7
-7.5 || -226.1 | -220.7 | -217.1 | -214.9 | -214.2 | -214.9 | -217.1 | -220.7 | -226.1
-10. || -231.1 | -226.1 | -222.7 | -220.7 | -220.1 | -220.7 | -222.7 | -226.1 | -231.1

Table 4.6: Longitudinal and transverse energy loss vs. transverse beam off-
set for a Gaussian bunch (¢ = 20 mm) for a pillbox cavity with

quadratic cross-section.
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Figure 4.14: Quadratic cavity: horiz.
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4.2.3 Elliptic Cross-Section

The geometry of the elliptic cavity is shown in Figure 4.17, and the parameters
of the calculations are listed in Table 4.7. The longitudinal and transverse loss
of a Gaussian beam for those beam-offsets are listed in Table 4.8 (page 47),
and their graphical representations are shown on pages 48 and 49.

Figure 4.17: Cavity with elliptic cross section

Elliptic Cavity
(x,y) - half axis | (140, 70) mm
length 100 mm
Beam-pipe
(x,y) - half axis (70,35) mm
Zin 100 mm
Zout 100 mm
Beam
o 20 mm
total +50
offset +0,2.5,...10mm

Table 4.7: Geometric properties
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horizontal energy loss vs. transverse beam offset [V /nC]

offset X [mm]

y[mm] || -10.] -75] 5.] 25] 0] 25| 5] 75] 10
10. || -15.11 | -11.16 -7.35 -3.65 0 3.65 7.35 11.16 15.11
7.5 || -13.94 | -10.33 -6.82 -3.39 0 3.39 6.82 | 10.33 | 13.94
5. || -13.14 -9.74 -6.44 -3.2 0 3.2 6.44 9.74 13.14
2.5 || -12.67 -9.4 -6.22 -3.09 0 3.09 6.22 9.4 12.67

0| -12.51 -9.29 -6.14 -3.06 0 3.06 6.14 9.29 12.51
-2.5 || -12.67 94 -6.22 -3.09 0 3.09 6.22 94 12.67
-5. || -13.14 -9.74 -6.44 -3.2 0 3.2 6.44 9.74 13.14
-7.5 || -13.94 | -10.33 -6.82 -3.39 0 3.39 6.82 | 10.33 | 13.94
-10. || -15.11 | -11.16 -7.35 -3.65 0 3.65 7.35 11.16 15.11
vertical energy loss vs. transverse beam offset [V /nC]
offset X [mm)]

y [mm] -10.] 75 ] 5[ -25] 0] 25] 5] 75] 10
10. 87.13 | 85.96 | 85.18 | 84.74 | 84.59 | 84.74 | 85.18 | 85.96 | 87.13
7.5 63.58 | 62.74 | 62.16 | 61.82 | 61.72 | 61.82 | 62.16 | 62.74 | 63.58
5. 41.59 | 41.04 | 40.66 | 40.44 | 40.36 | 40.44 | 40.66 | 41.04 | 41.59
2.5 20.56 | 20.29 20.1 19.99 19.95 19.99 20.1 20.29 | 20.56

0 0 0 0 0 0 0 0 0 0
-2.5 || -20.56 | -20.29 -20.1 | -19.99 | -19.95 | -19.99 -20.1 | -20.29 | -20.56
-5. || -41.59 | -41.04 | -40.66 | -40.44 | -40.36 | -40.44 | -40.66 | -41.04 | -41.59
-7.5 || -63.58 | -62.74 | -62.16 | -61.82 | -61.72 | -61.82 | -62.16 | -62.74 | -63.58
-10. || -87.13 | -85.96 | -85.18 | -84.74 | -84.59 | -84.74 | -85.18 | -85.96 | -87.13
longitudinal energy loss vs. transverse beam offset [V/nC]
offset X [mm]

y [mm] -10. [ 75 5] 25 0] 25] 5.1 75] 10
10. || 2148 | -212.8 | -211.4 | -210.6 | -210.3 | -210.6 | -211.4 | -212.8 | -214.8
7.5 || -206.8 | -204.9 | -203.6 | -202.8 | -202.5 | -202.8 | -203.6 | -204.9 | -206.8
5. | -201.2 | -199.3 | -198.1 | -197.3 -197. | -197.3 | -198.1 | -199.3 | -201.2
2.5 || -197.8 -196. | -194.8 -194. | -193.8 -194. | -194.8 -196. | -197.8

0| -196.7 | -194.9 | -193.7 | -192.9 | -192.7 | -192.9 | -193.7 | -194.9 | -196.7
-2.5 || -197.8 -196. | -194.8 -194. | -193.8 -194. | -194.8 -196. | -197.8
-5. || -201.2 | -199.3 | -198.1 | -197.3 -197. | -197.3 | -198.1 | -199.3 | -201.2
-7.5 || -206.8 | -204.9 | -203.6 | -202.8 | -202.5 | -202.8 | -203.6 | -204.9 | -206.8
-10. || -214.8 | -212.8 | -211.4 | -210.6 | -210.3 | -210.6 | -211.4 | -212.8 | -214.8

Table 4.8: Longitudinal and transverse energy loss vs. transverse beam offset
for a Gaussian bunch (o = 20 mm) for a pillbox cavity with elliptic
cross-section.
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Figure 4.18: Elliptic cavity: vector- & contourplot of transverse energy loss
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Figure 4.19: Elliptic cavity: transverse energy loss
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kx [V/nC]

Figure 4.20: Elliptic cavity: horiz. & vert. energy loss (3-D)
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Figure 4.21: Elliptic cavity: horiz. & vert. energy loss (contour)

Figure 4.22: Elliptic cavity: longitudinal energy loss (3-D & contour)
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4.2.4 Rectangular Cross-Section

The geometry of the rectangular cavity is shown in Figure 4.23, and the param-
eters of the calculations are listed in Table 4.9. The longitudinal and transverse
loss of a Gaussian beam for those beam-offsets are listed in Table 4.10 (page
51), and their graphical representations are shown on pages 52 and 53.

Figure 4.23: Cavity with rectangular cross section

Rectangular Cavity
(x,y) - width (140,70) mm
length 100 mm
Beam-pipe
(x,y) - width (70,35) mm
Zin 100 mm
Zout 100 mm
Beam
o 20 mm
total +50
offset +0,2.5,...10mm

Table 4.9: Geometric properties
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horizontal energy loss vs. transverse beam offset [V/nC]

offset X [mm)]

y [mm] -10.] 75 ] 5[ -25] 0] 25] 5] 75] 10
10. -1.13 | -0.72 | -042 | -0.19 0 0.19 0.42 0.72 1.13
7.5 -1.39 -09 | -054| -0.25 0 0.25 0.54 0.9 1.39
5. -L59| -1.04| -0.63| -0.29 0 0.29 0.63 1.04 1.59
2.5 -1.71 | -1.13 | -0.68 | -0.32 0 0.32 0.68 1.13 1.71

0 -175] -1.16 -0.7 | -0.33 0 0.33 0.7 1.16 1.75
-2.5 -1.71 | -1.13 | -0.68 | -0.32 0 0.32 0.68 1.13 1.71
5. -1.59 | -1.04 | -0.63 | -0.29 0 0.29 0.63 1.04 1.59
-75 || -1.39 -09 | -054| -0.25 0 0.25 0.54 0.9 1.39
-10. -1.13 | -0.72 | -042 | -0.19 0 0.19 0.42 0.72 1.13
vertical energy loss vs. transverse beam offset [V /nC]
offset X [mm)]

y [mm] -10.] 75 ] 5[ -25] 0] 25] 5] 75] 10
10. || 87.42 | 87.67 | 87.83 | 87.93 | 87.96 | 87.93 | 87.83 | 87.67 | 87.42
7.5 | 63.58 | 63.77 63.9 | 63.98 | 64.01 | 63.98 63.9 | 63.77 | 63.58
d. 4148 | 41.61 | 41.71 | 41.76 | 41.78 | 41.76 | 41.71 | 41.61 | 41.48
2.5 2047 | 20.54 | 20.59 | 20.62 | 20.63 | 20.62 | 20.59 | 20.54 | 20.47

0 0 0 0 0 0 0 0 0 0
-2.5 || -20.47 | -20.54 | -20.59 | -20.62 | -20.63 | -20.62 | -20.59 | -20.54 | -20.47
-5. || -41.48 | -41.61 | -41.71 | -41.76 | -41.78 | -41.76 | -41.71 | -41.61 | -41.48
-7.5 || -63.58 | -63.77 | -63.9 | -63.98 | -64.01 | -63.98 | -63.9 | -63.77 | -63.58
-10. || -87.42 | -87.67 | -87.83 | -87.93 | -87.96 | -87.93 | -87.83 | -87.67 | -87.42
longitudinal energy loss vs. transverse beam offset [V/nC]
offset X [mm]

y [mm] -10. [ 75 5] 25 0] 25] 5.1 75] 10
10. || -205.4 | -205. | -204.7 | -204.6 | -204.5 | -204.6 | -204.7 | -205. | -205.4
7.5 || -197.1 | -196.6 | -196.3 | -196.2 | -196.1 | -196.2 | -196.3 | -196.6 | -197.1
5. | -191.3 | -190.8 | -190.5 | -190.3 | -190.2 | -190.3 | -190.5 | -190.8 | -191.3
2.5 | -187.8 | -187.3 | -187. | -186.8 | -186.7 | -186.8 | -187. | -187.3 | -187.8

0 || -186.6 | -186.1 | -185.8 | -185.6 | -185.5 | -185.6 | -185.8 | -186.1 | -186.6
-2.5 || -187.8 | -187.3 | -187. | -186.8 | -186.7 | -186.8 | -187. | -187.3 | -187.8
-5. || -191.3 | -190.8 | -190.5 | -190.3 | -190.2 | -190.3 | -190.5 | -190.8 | -191.3
-7.5 || -197.1 | -196.6 | -196.3 | -196.2 | -196.1 | -196.2 | -196.3 | -196.6 | -197.1
-10. || -205.4 | -205. | -204.7 | -204.6 | -204.5 | -204.6 | -204.7 | -205. | -205.4

Table 4.10: Longitudinal and transverse energy losses vs. transverse beam
offset for a Gaussian bunch (o0 = 20 mm) for a pillbox cavity
with rectangular cross-section.

ol




Chapter 4 Wake Potentials of 3-Dimensional Structures

1% I N T O O O B
A

s [ ] [ 5

A R N T T S T S T B .
T

A I e R R A .

-10. -7.5 -5.

2
1.5 4 1
77
1 7 —_
E Z £
g 0.5 Z <0
> >
st 0 s}
% -0.5 ?—0
-1 ~a -
-1.5 -1.
5 10.
— e —k— *— A —k— — > —k
75 75
50 50
'a — —0— 0 — 6 —9p— o — 6 —— —© '8
5 25 Tk — e — ke — - — e —h —h — % E 25
> >
= Of——4+—a—+ ——————a = 0
S -0 -~ ——————6——0——0 _
§-25 a 25
M ok -k A
-50 -50
-75 -75
-10. -5. 0. 5. 10.
x/mm

Figure 4.25: Rectangular

o Hr U0 o u = u

-2.

5 0. 2.5 5.

x/mm

- —o— o
-

it S

S SR

- ——p——e— &~

—e
*

T
A
g

-10.

-5.

0. 5.

y/mm

cavity: transverse energy loss

52

7.5 10.




Chapter 4 Wake Potentials of 3-Dimensional Structures

ky [V/nC]

Figure 4.26: Rectangular cavity: horiz. & vert. energy loss (3-D)
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Figure 4.27: Rectangular cavity: horiz. & vert. energy loss (contour)
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Figure 4.28: Rectangular cavity: longitudinal energy loss (3-D & contour)
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4.2.5 Comparison of the 4 Basic Geometries

Comparison of the loss factors

The main components of the loss factors in the 3 spatial dimensions for the 4
basic geometries are summarised in Table 4.11. The loss factors for the cylinder
symmetric (circular) structure calculated with ABCI[Chi94] are quoted for
comparison (indicated as 2-D). Taking into account that the structure modelled
using a Cartesian mesh can describe it only approximately, the agreement
between the 2-D and 3-D calculation is quite good.

main loss factor components

basic horizontal vertical longitudinal
geom. ka ks kgy2 ky kys kyq2 k, kaz k”y2
V/pCm | V/pCm?® | V/pCm?® | V/pCm | V/pCm?® | V/pCm?® | V/pC | V/pCm? | V/pCm?>
circ.(3-D) | 6.580 | 3796.2 | 5577.5 | 6.580 | 3796.2 | 5577.5 | 0.2081 | 122.5 | 122.5

circ.(2-D) | 6.488 — — 6.488 — 0.2065 | 120.4 | 120.4
quad. 5.830 | 7389.5 |-9298.2 | 5.830 | 7389.5 |-9298.2|0.2070 | 124.6 | 124.6
elli. 1.221 | 305.4 | 2281.0 | 7.948 | 3877.7 | 2295.1 | 0.1927 | 39.8 173.8

rect. 0.129 | 399.6 | -588.5 | 8.214 | 4615.7 | -585.9 | 0.1855 | -10.36 | -185.8

Table 4.11: Main components of loss factor for the basic geometries

The loss factor components k,, k, resp. k, are equivalent to the transverse loss
factor k£, (azimuthal order m = 1) resp. the longitudinal loss factor (azimuthal
order m = 0). The longitudinal components k , and k .2 correspond to the
longitudinal loss of the dipole component m = 1. The strongest transverse
components, besides the linear loss factors, were found to be ks, ks and kg2,
kyq2 for all geometries. These last two terms take into account the wake field
coupling between the two transverse planes. The values of those components,
as well as the relative contributions of the main components, to the losses
of a beam with a (z,y) offset of (5,5) mm, are shown in Figure 4.29. The
contributions of the remaining components are below a few per-mil, and for
better visibility only the main contributions are displayed.

As can be seen from Table 4.11, the variation of the longitudinal loss factor for
the 4 geometries is within a range of only 5%. The vertical loss &, shows already
a quite significant variation of about 30%, whereas the horizontal loss and the
higher order transverse components of the loss shows almost no correlation.
The transverse cross coupling terms k2, k,,2 even change sign depending on
the specific geometry, but they have almost the same value for both transverse
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directions for each geometry.
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Figure 4.29: Longitudinal loss factors of the 4 basic geometries and relative
contributions to the longitudinal losses for (5,5) mm (z,y) beam offset.
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Figure 4.30: Vertical loss factors of the 4 basic geometries and relative contri-
butions to the vertical losses for (5,5) mm (z,y) beam offset.
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Comparison of the wake potentials

The loss factors for the 4 basic geometries were compared in the last section. To
point out the differences of those geometries, the wake-potentials yield further
information. Even though the longitudinal loss factors were not very different
for the 4 structures, the corresponding wake potentials (shown in Figure 4.32
show quite significant differences in their long range behaviour. The wake

0.8 . . ; .
0.6l Longitudinal Wake Potential
0.4¢
—_ /\,/,A
o 0.2¢ N
& X0
\o /o L \
E. 0 } AN AN = .7,
\ \ S
z -0.2¢ N < /7 :
0. al Circ.
e — — — — Quad.
-0.6t ] == E114.
— ~—  Rect
-0.8 - :
0.1 0.2 0.3 0.4
s [m]

Figure 4.32: Longitudinal wake potentials of the 4 basic geometries.

potentials of the circular and the quadratic structures on the one hand, and
those of the elliptic and rectangular structures on the other hand, are quite
similar to each other. Since the longitudinal wake potential is approximately
proportional to the volume of a structure this is not too surprising. Therefore
one can deduce that for longitudinal impedance considerations the results do
not depend critically on the geometry as long as the volume stays about the
same. This argument does not hold any longer for the transverse effects. Here
the wake potentials depend more critically on the actual transverse shape.
Especially the horizontal wake potential cannot be estimated easily from 2-D
calculations. This can be seen in Figure 4.33.
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Vertical Wake Potential
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Figure 4.33: Transverse wake potentials of the 4 basic geometries.
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4.3 Rectangular Cavity - Varying Axes Ratio

For these basic geometries, the ratio of horizontal to vertical loss factor varies
over a wide range, depending on the cross section of the structure. To examine
the behaviour of the wake potentials, a rectangular cavity with quadratic side-
tubes was investigated. The quadratic side-tubes (beam pipe) have a width of
50 mm and a length of 100 mm. The horizontal and vertical cavity depth will
be varied over a range of 0 to 100 mm in steps of 2 mm.

Figure 4.34: Rectangular “pillbox” cavity - varying size.

4.3.1 Loss Factors as Function of the Cavity Depth

The loss factors in the 3 transverse dimensions for the different axis ratios of
the rectangular cavity are shown in Fig. 4.36. The loss factor in one transverse
direction may become negative if the cavity depth is smaller in this direction.
The magnitude of the negative loss factor is largest for zero cavity depth in
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Figure 4.35: Rectangular cavity - varying transverse cavity depth.

the corresponding direction. For a small cavity depth in one direction also the
longitudinal loss factor stays rather small.

For accelerators whose performance is limited due to transverse impedance,
this limitation usually occurs only in one of the two transverse directions, such
as the vertical one for LEP. By installing elements, with geometries optimised
to achieve a large negative loss factor in the problematic direction, one could
thus actually reduce the total loss factors in the vertical direction, and thereby
increase the threshold current of the vertical transverse mode coupling insta-
bility (TMCTI).
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Figure 4.36: Loss factors of a rectangular cavity as function of horizontal
and vertical cavity depth for a Gaussian bunch ¢ =20 mm.
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4.4 LEP - Shielded Bellows

The RF-shields of the elliptic bellows in the arc-sections of LEP have a rather
small cross section variation. Their transverse wake potentials are therefore
rather small. Nevertheless, since they are very numerous their contribution to
the vertical impedance of LEP is important ([WE96] §5).

To study the influence of the slots between the sliding fingers of the bellows
shielding, a rectangular model was used first. This geometry was chosen to
allow a more accurate description of the slots.

4.4.1 Rectangular Model of LEP-Bellows

The geometry of the rectangular model of the bellows is shown in Figure 4.37.
This figure shows the vertical dimensions of the structure. In the horizontal
plane the width of the beam-pipe is larger (130 mm) while the variation of
the bellows shielding is the same. The length of the slots is 70 mm, and their

™ = ™
= o~
— <
1
—
1
R ® S — R
1
—
70
80 36 |2 58 14 74 24 112 36 80

Figure 4.37: Rectangular model used to investigate the influence of the slots
between the sliding contact fingers of the shielded bellows.

longitudinal location can be seen in Figure 4.37. The number of slots is varied,
while the total area remains the same (i.e. the fewer the slots the bigger their
width). The transverse positions of the slots along the cross sections of the 4
models are shown in Figure 4.38. The exact positions of the slots are specified
in Table 4.12.
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Figure 4.38: Cross sections of the 4 rectangular bellows models.

H horizontal slots H vertical slots
bellows nr. width | first | interval nr. width | first | interval
model — zs/mm | z1/mm | dz/mm — ys/mm | yi/mm | dy/mm
Model C 8 8 +8 16 4 8 +8 16
Model B 16 4 +4 8 8 4 +4 8
Model A 32 2 +2 4 16 2 +2
Model 0 0 — — — 0 — — —

Table 4.12: Transverse position, width and intervals of the slots between
the sliding fingers for the rectangular shielded bellows models.
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Model 0 without slots: transverse energy loss vs. beam offset

The losses of a Gaussian beam of ¢ = 20 mm for horizontal resp. vertical
beam offsets from —6 to +6 mm in steps of 2 mm were calculated for the 4
rectangular models. Since the absolute values and the offset-dependence of the
losses for those 4 models are very similar, this dependence is shown only for
the rectangular model without slots (i.e. Model 0). The results for the 3 other
models can be seen below when the 4 models are compared with each other.

Figure 4.39: Rectangular model of LEP shielded bellows without slots.

The transverse energy loss in the 3 spatial directions for a Gaussian beam
with 0 = 20mm are listed in Table 4.13 on page 64, the horizontal resp.
vertical beam offsets vary from —6 to 6 mm in steps of 2 mm. The graphical
representations are shown in Figures 4.40 - 4.43 on pages 65 and 66.

An interesting phenomenon can be seen clearly in the vector-plot of the trans-
verse energy loss (Fig. 4.40). The horizontal kicks point inwards, which means
that the energy loss has a negative sign, which corresponds to a focusing effect
of the horizontal wake fields. This interesting effect can appear for non axially
symmetric structures and is further examined in the section 4.3.
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‘ horizontal energy loss vs. transverse beam offset [V/nC] ‘

offset X [mm]
ymm | 60| -40] -20[ o00] 20| 40| 60
6.0 || 0.236 | 0.172 | 0.093 | 0.000 | -0.093 | -0.172 | -0.236
4.0 || 0.228 | 0.166 | 0.089 | 0.000 | -0.089 | -0.166 | -0.228
2.0 0.223 | 0.162 | 0.087 | 0.000 | -0.087 | -0.162 | -0.223
0.0 || 0.221 | 0.161 | 0.087 | 0.000 | -0.087 | -0.161 | -0.221
-2.0 || 0.223 | 0.162 | 0.087 | 0.000 | -0.087 | -0.162 | -0.223
-4.0 || 0.228 | 0.166 | 0.089 | 0.000 | -0.089 | -0.166 | -0.228
-6.0 || 0.236 | 0.172 | 0.093 | 0.000 | -0.093 | -0.172 | -0.236
‘ vertical energy loss vs. transverse beam offset [V /nC] ‘
offset X [mm]
ymm | -60] -40] -20[ 00| 20| 40| 60
6.0 2459 | 2.469 | 2475 | 2478 | 2475 | 2.469 | 2.459
4.0 1.584 | 1.590 | 1.594 | 1.596 | 1.594 | 1.590 | 1.584
20 || 0.772 | 0.775 | 0.776 | 0.777 | 0.776 | 0.775 | 0.772
0.0 | 0.000 | 0.000 | 0.000 { 0.000 | 0.000 | 0.000 | 0.000
-2.0 || -0.772 | -0.775 | -0.776 | -0.777 | -0.776 | -0.775 | -0.772
-4.0 || -1.584 | -1.590 | -1.594 | -1.596 | -1.594 | -1.590 | -1.584
-6.0 || -2.459 | -2.469 | -2.475 | -2.478 | -2.475 | -2.469 | -2.459
‘ longitudinal energy loss vs. transverse beam offset [V/nC] ‘
offset X [mm)]
ymm] | 60| 40| -20] 00| 20| 40| 60
6.0 2279 | 2.291 | 2.299 | 2302 | 2299 | 2.291 | 2.279
4.0 2211 | 2.223 | 2.231 | 2.234 | 2.231 | 2223 | 2.211
2.0 2171 2.183 | 2.191 | 2193 | 2.191 | 2183 | 2.171
0.0 2.158 | 2.170 | 2.178 | 2.180 | 2.178 | 2.170 | 2.158
-2.0 2171 2.183 | 2.191 | 2193 | 2.191 | 2183 | 2.171
-4.0 2211 | 2.223 | 2.231 | 2.234 | 2.231 | 2223 | 2.211
-6.0 2279 | 2.291 | 2.299 | 2302 | 2299 | 2.291 | 2.279

Table 4.13: Rectangular shielded bellows without slots : longitudinal and
transverse energy loss as function of the transverse beam offset
for a Gaussian bunch of o = 20 mm.
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Figure 4.40: Rectangular shielded bellows Model 0: vector- & contour-plot
of transverse energy loss vs. beam offset ( o = 20 mm).
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Figure 4.41: Rectangular shielded bellows Model 0: horizontal and vertical
energy loss as function of the horizontal and vertical beam
offset for a Gaussian beam ( 0 =20 mm).
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Figure 4.42: Rectangular shielded bellows: horizontal and vertical energy
loss as function of the transverse beam position (o = 20 mm).
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Figure 4.43: Rectangular shielded bellows Model 0: longitudinal energy loss
as function of the transverse beam position (o0 = 20 mm).
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Comparison of the Rectangular bellows models

The longitudinal loss factors and the main components of the longitudinal
energy loss for the rectangular bellows models with different slot configuration
are shown in Figure 4.44.

350 [ | Longitudinal Loss Factor of Rectang. BellowsModel | 4 125. F ‘ Relative Contribution to Longitudinal Loss ]
300 | 2721 | a0 %% %13 I 8,
—- 2367 _ - * -
0 250 £ 2181 2.2511 e 1. L E
< e =
S 200 1x Beam Offset
8 150 w 0 F x=4mm |
¥ 150 + Number of slots k4 1|7 =~ y=4mm
100 | Modd0 0/0 |[i 5[ ]
Model A 16 /8
050 © ModdB 8/4 |{ o 288 24 20 20k
Modd C 42 -0.64 -0.64 -064 -061 K,
0.00
Model 0 Mode A Model B Model C Model 0 Model A Model B Model C

Figure 4.44: Longitudinal loss factor of the rectangular bellows models and
relative contributions to the longitudinal energy loss for a o =
20 mm Gaussian bunch and a (x,y) beam-offset of (4,4) mm.

When the number of slots is increased and their width reduced, the values
for the loss factors converge to the one of the model without slots, i.e. from
Model C to Model 0. For a rather large beam offset of 4 mm in each transverse
direction, the contribution of the higher order components comes mainly from
k((f) and kéfg, but they yield only a small contribution.

The same dependence on the slot configuration can be seen for the transverse
loss factors in Figure 4.45 and 4.46. Especially the values of the loss factor com-
ponents k%) and kéyl), which represent the main source of wake field coupling
of the two transverse planes converge to the values for the model without slots
i.e. Model 0. Therefore one can assume that the influence of the slots between
the sliding fingers is quite weak and can be neglected for further calculations.

The slots are only important if one is interested in very high frequencies.
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Figure 4.45: Vertical loss factors of the rectangular bellows models and rel-
ative contributions to the vertical loss factor for a o = 20 mm
Gaussian bunch and a (x,y) beam-offset of (4,4) mm.
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Figure 4.46: Horizontal loss factors of the rectangular bellows models and
relative contributions to the horizontal loss factor for a o = 20
mm Gaussian bunch and a (x,y) beam-offset of (4,4) mm.
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4.4.2 Elliptic Model of LEP Shielded Bellows

In the last section the influence on the wake fields of the slots between the
sliding contact fingers of the LEP shielded bellows was examined. Since the
influence of these slots was found to be small, a more realistic elliptic model
without slots will be used to calculate the wake potentials, which have later
been used in the multi particle simulation program TRISIM3D (§5). Apart
from the different cross section, the progression of the geometry in longitudinal
direction is the same as for the rectangular model (see Fig. 4.37).

Figure 4.47: Elliptic model of LEP shielded bellows

Loss factors as function of the beam offset

The loss factors of a Gaussian beam of 0 =5 mm for horizontal resp. vertical
beam offsets from 0 to +10 mm in steps of 2 mm were calculated for the elliptic
model. The values of the longitudinal and transverse energy loss (Table 4.14)
and their graphical representations are shown on the following pages (p. 70 -
72).
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‘ horizontal energy loss vs. transverse beam offset [V /nC]| ‘

offset X [mm]
y [mm] 00 20| 40[ 60| 80| 100
10.0 || 0.000 | 0.071| 0.153 | 0.257 | 0.390 | 0.561
8.0 || 0.000 | 0.068 | 0.145 | 0.239 | 0.357 | 0.506
6.0 || 0.000 | 0.065| 0.137 | 0.224 | 0.331 | 0.464
4.0 0.000| 0.063| 0.132 | 0.213 | 0.312 | 0.435
2.0 0.000| 0.061| 0.128 | 0.206 | 0.301 | 0.417
0.0 || 0.000 | 0.061| 0.127 | 0.204 | 0.297 | 0.411
‘ vertical energy loss vs. transverse beam offset [V /nC] ‘
offset X [mm]
y [mm] 00/ 20| 40[ 60] 80| 100
10.0 || 17.267 | 17.268 | 17.273 | 17.287 | 17.315 | 17.365
8.0 || 13.216 | 13.217 | 13.223 | 13.235 | 13.258 | 13.297
6.0 || 9.586 | 9.588 | 9.592 | 9.602 | 9.620 | 9.648
4.0 6.243 | 6.244 | 6.248 | 6.254 | 6.266 | 6.285
20 3.079 | 3.079 | 3.081 | 3.085| 3.091 | 3.100
0.0 || 0.000 | 0.000| 0.000 | 0.000| 0.000 | 0.000
‘ longitudinal energy loss vs. transverse beam offset [V/nC] ‘
offset X [mm]
y [mm] 00/ 20| 40[ 60] 80| 10.0
10.0 || 51.07 | 51.08 | 51.10 | 51.15| 51.23| 51.34
8.0| 48.49 | 4850 | 48.53 | 48.58 | 48.66 | 48.76
6.0 || 46.55 | 46.56 | 46.59 | 46.64 | 46.72 | 46.82
4.0 || 45.19 | 45.20 | 45.23 | 45.28 | 45.36 | 45.46
20| 4439 | 4440 | 4443 | 44.48 | 44.56 | 44.66
0.0 || 44.12 | 44.13 | 44.16 | 44.22 | 44.29 | 44.39

Table 4.14: Elliptic shielded bellows: longitudinal and transverse energy loss
as function of the transverse beam-offset for a Gaussian bunch (o =5 mm).
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Figure 4.48: Elliptic shielded bellows: vector and contour-plot of the trans-
verse energy loss as function of the beam offset (o = 5 mm).
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Figure 4.49: Elliptic shielded bellows: horizontal and vertical energy loss as
function of the horiz. and vertical beam offset (0 =5 mm).

71



Chapter 4 Wake Potentials of 3-Dimensional Structures

-/ Vo

y/mm
o
o O B N O N B O @
y/mm
o o B~ N O N B O

'
= | | |
o

-10.-8.-6.-4.-2.0. 2. 4. 6. 8. 10. -10.-8.-6.-4.-2.0. 2. 4. 6. 8. 10.
x/mm x/mm

|
i
o

Figure 4.50: Elliptic shielded bellows: horizontal and vertical energy loss as
function of the transverse beam position (o =5 mm).
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Figure 4.51: Elliptic shielded bellows: longitudinal energy loss as function
of the transverse beam position (o =5 mm).
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Main components of the loss factors

The main components of the loss factors for the elliptic bellows model are
presented in Table 4.15. The values obtained for an axially symmetric model
(2-D) are shown as well. They are much smaller than those of the 3-D one. The
ratio of vertical to horizontal loss factors is very high. An explanation for these
large ratios of the transverse loss factors in non-axially symmetric structures
can be found in §5.3.2. The main components for a beam with and (x,y) offset
of (4,4) mm are displayed in the table as well. Even for this rather large beam
offset the relative contribution of the largest higher order components is only

a few percent. The horizontal-vertical cross coupling term k;z)z is also a few
()

e almost vanishes.

percent, while the vertical-horizontal one k

main loss factor components

horizontal vertical longitudinal
geom. | K| K | RS ) B | B RS | k| kL | ke

V/pCm | V/pCm? | V/pCm? | V/pCm | V/pCm? | V/pCm? | V/pC | V/pCm? | V/pCm?
(3-D) [0.0298 | 117.5 | 63.17 1.53 | 17482 | 64.4 |0.044| 2.54 66.25
2p) | — | — — loms| — — l0336| — | 3886

relative contribution for a (x,y) beam offset of (4,4) mm
(3-D)[%] | 90.65 | 571 | 3.07 [9s11| 179 | 007 [97.55] 009 | 2.34

Table 4.15: Main components of the energy loss for an elliptic model of the LEP
shielded bellows for a ¢ = 5 mm Gaussian beam and their relative contribution
for a (x,y) beam-offset of (4,4) mm.
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4.5 LEP Electrostatic Separators

Other structures expected to contribute strongly to the transverse coupling
impedance of LEP are the electrostatic separators. Again a quarter of the
structure was used for the wake potential calculations to allow a better trans-
verse description of the geometry. The length of the separator plates was
reduced from 4 meters to 30 cm. The dependence of the loss factor on the
length of the plates was found to be small, as long as the plates are longer
than the range of the wake potential calculation [Sab95a], because the electro-
magnetic field travelling along with the beam does not change significantly
while the beam is between the two plates. The full geometry is shown in Fig-
ures 4.52 and 4.53, for the wake field calculations a quarter of the structure
was used .

O - - &
g S : ] | ,§
7777 o
Te)
295
50| | 150 | 222 |75 506 75| 222 | 150 | |50 320

Figure 4.52: Geometry of the LEP separator model with tapers and plates.

Figure 4.53: LEP separator model with tapers and plates.
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4.5.1 LEP-Separators without Plates

The longitudinal and transverse energy loss of a Gaussian beam with o = 25
mm for beam-offsets Ax, Ay of +0,2.5,5,7.5 mm are listed in Table 4.16, and
their graphical representations are shown on pages 76 and 77.

| horizontal energy loss vs. transverse beam offset [V/nC]

offset X [mm)]
y [mm] -75] 50| -25[] 00] 25] 50| 75
7.5 | -26.46 | -16.44 | -T7.45 0.00 745 | 16.44 | 26.46
5.0 || -24.20 | -14.95 | -6.80 0.00 6.80 | 14.95 | 24.20
2.5 | -22.80 | -14.13 | -6.46 0.00 6.46 | 14.13 | 22.80
0.0 || -22.44 | -13.92 | -6.38 0.00 6.38 | 13.92 | 22.44
-2.5 || -22.80 | -14.13 | -6.46 0.00 6.46 | 14.13 | 22.80
-5.0 || -24.20 | -14.95 | -6.80 0.00 6.80 | 14.95 | 24.20
-7.5 || -26.46 | -16.44 | -T7.45 0.00 745 | 16.44 | 26.46
| vertical energy loss vs. transverse beam offset [V /nC] |
offset X [mm]
ymm] || 75| 50] -25] 00] 25] 50] 75
7.5 25.84 | 23.55 | 22.15 | 21.78 | 22.15 | 23.55 | 25.84
5.0 16.09 | 14.57 | 13.73 | 13.52 | 13.73 | 14.57 | 16.09
2.5 7.29 6.62 6.27 6.19 6.27 6.62 7.29
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-2.5 -729 | -6.62| -6.27| -6.19 | -6.27 | -6.62| -7.29
-5.0 || -16.09 | -14.57 | -13.73 | -13.52 | -13.73 | -14.57 | -16.09
-7.5 || -25.84 | -23.55 | -22.15 | -21.78 | -22.15 | -23.55 | -25.84
| longitudinal energy loss vs. transverse beam offset [V/pC] |
offset X [mm]
y [mm] 75| 50 -25] 00] 25] 50| 75
7.5 | -0.311 | -0.310 | -0.309 | -0.309 | -0.309 | -0.310 | -0.311
5.0 || -0.310 | -0.309 | -0.308 | -0.308 | -0.308 | -0.309 | -0.310
2.5 || -0.309 | -0.308 | -0.307 | -0.307 | -0.307 | -0.308 | -0.309
0.0 || -0.309 | -0.308 | -0.307 | -0.307 | -0.307 | -0.308 | -0.309
-2.5 || -0.309 | -0.308 | -0.307 | -0.307 | -0.307 | -0.308 | -0.309
-5.0 || -0.310 | -0.309 | -0.308 | -0.308 | -0.308 | -0.309 | -0.310
-7.5 || -0.311 | -0.310 | -0.309 | -0.309 | -0.309 | -0.310 | -0.311

Table 4.16: LEP separator without plates: Longitudinal and transverse energy
loss vs. transverse beam offset for a Gaussian bunch with ¢ = 25 mm.
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Figure 4.54:
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Figure 4.56: LEP separator without plates: horizontal and vertical energy
loss as function of the transverse beam position (o = 25 mm).
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Figure 4.57: LEP separator without plates: longitudinal energy loss as func-
tion of the transverse beam position (0 = 25 mm).
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4.5.2 LEP-Separators with Plates

The longitudinal and transverse energy loss of a Gaussian beam with o = 25
mm for beam-offsets Ax, Ay of +0,2.5,5,7.5 mm are listed in Table 4.17, and
their graphical representations are shown on pages 79 and 80.

| horizontal energy loss vs. transverse beam offset [V/nC]

offset

X [mm)]
y [mm] -75] -50] -25] 00] 25| 50] 75
7.5 | -23.05 | -13.90 | -6.02 0.00 6.02 | 13.90 | 23.05
5.0 || -20.04 | -11.94 | -5.17 0.00 0.17 | 11.94 | 20.04
2.5 || -18.17 | -10.86 | -4.72 0.00 4.72 | 10.86 | 18.17
0.0 || -17.71 | -10.60 | -4.62 0.00 4.62 | 10.60 | 17.71
-2.5 || -18.17 | -10.86 | -4.72 0.00 4.72 | 10.86 | 18.17
-5.0 || -20.04 | -11.94 | -5.17 0.00 5.17 | 11.94 | 20.04
-7.5 || -23.05 | -13.90 | -6.02 0.00 6.02 | 13.90 | 23.05
| vertical energy loss vs. transverse beam offset [V /nC] |
offset X [mm]
y[mm] | 75| 0] 25] 00] 25| 50] 75
7.5 4739 | 4459 | 4288 | 4244 | 42.88 | 44.59 | 47.39
9.0 | 29.75 | 27.88 | 26.86 | 26.60 | 26.86 | 27.88 | 29.75
2.5 13.70 | 1290 | 1248 | 12.38 | 12.48 | 1290 | 13.70
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-2.5 || -13.70 | -12.90 | -12.48 | -12.38 | -12.48 | -12.90 | -13.70
-5.0 || -29.75 | -27.88 | -26.86 | -26.60 | -26.86 | -27.88 | -29.75
-7.5 || -47.39 | -44.59 | -42.88 | -42.44 | -42.88 | -44.59 | -47.39
| longitudinal energy loss vs. transverse beam offset [V/pC] |
offset X [mm]
y [mm] 75 -50] -25] 00] 25] 50| 75
7.5 || -0.295 | -0.294 | -0.294 | -0.294 | -0.294 | -0.294 | -0.295
5.0 || -0.292 | -0.291 | -0.291 | -0.290 | -0.291 | -0.291 | -0.292
2.5 || -0.290 | -0.289 | -0.289 | -0.289 | -0.289 | -0.289 | -0.290
0.0 || -0.289 | -0.289 | -0.288 | -0.289 | -0.288 | -0.289 | -0.289
-2.5 || -0.290 | -0.289 | -0.289 | -0.289 | -0.289 | -0.289 | -0.290
-2.0 || -0.292 | -0.291 | -0.291 | -0.290 | -0.291 | -0.291 | -0.292
-7.5 || -0.295 | -0.294 | -0.294 | -0.294 | -0.294 | -0.294 | -0.295

Table 4.17: LEP separator with plates: longitudinal and transverse energy loss
vs. transverse beam offset for a Gaussian bunch with o = 25 mm.
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Figure 4.58: LEP separator with plates: vector and contour-plot of the
transverse energy loss as function of the beam offset for a Gaus-
sian bunch with o = 25 mm.
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Figure 4.60: LEP separator with plates: horizontal and vertical energy loss
as function of the transverse beam position (o = 25 mm).
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Figure 4.61: LEP separator with plates: longitudinal energy loss as function
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4.5.3 Comparison of Separator Model with and without
Plates

The main components of the separator models with and without plates are
listed in Table 4.18. For a beam with (5,5) mm beam offset the third order
components ks and ks yield a quite strong contribution of more than 10 %.
Since the values of this components are already high for the model without
plates, they are not related to the presence of the separator plates. Due the
Cartesian mesh, the large tapers of the separator tanks are not very smooth
and result in these higher order field components. On the other hand, the
transverse coupling terms k2 and k,,> are small. The presence of the separa-
tor plates does not cause a significant increase of the horizontal-vertical wake
field coupling in this structure.

main loss factor components

horizontal vertical longitudinal

separator | kg ks kgy2 ky k3 kya2 k

Y I |2 Ily2

model | v/pCm | V/pCm® | V/pCm?® | V/pCm | V/pCm?® | V/pCm® | V/pC | V/pCm? | V/pCm?

no plates | 2.454 |16114.2 | 4166.75 | 2.379 | 15955.2 | 4405.05 | 0.307 | 15.24 | -13.56

plates 1.735 | 18867.2 | 4917.51 | 4.801 |25238.8 | 5013.76 | 0.289 | 104.14 | -34.19

relative contribution in % for a (x,y) beam offset of 5,5 mm

no plates | 82.07 | 13.47 3.48 81.62 | 13.69 3.78 199.47| -0.12 -0.11

plates 72.67 | 19.76 9.15 86.09 | 11.31 225 |99.17| -0.89 -0.29

Table 4.18: Lower order components of the energy loss of the LEP separa-
tors, with and without plates, for a ¢ = 25 mm Gaussian beam and relative
contribution for a (x,y) beam-offset of (5,5) mm.
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TRISIM3D

5.1 Equations of motion

The particle distribution in the simulation program is represented by a number
of super-particles, also called macro-particles, typically a few thousand. Each
of these super-particles represents a large number of real particles in the accel-
erator, e.g for LEP one super-particle represents of the order of 10® electrons
or positrons in the real machine.

The accelerator is represented by a ring divided into a number of sections. Each
section consists of a point-like machine element followed by an arc section. In
the drift sections the motion of the macro-particles is assumed to be linear.
The effects of synchrotron radiation damping and quantum excitation are also
considered in these sections.

The equations used in TRISIM3D to describe the motion of these super-
particles follow the same formalism as used in TRISIM[Sab95a], which were de-
rived basically from its predecessors HERSIM2 [Wan90], HERSIM [Nys87] and
SIMTRAC [Bra84], and also include some modifications suggested in [Zot93].
The longitudinal motion is described by the energy deviation £ and time delay
t with respect to a synchronous reference particle. For the transverse mo-
tion the horizontal and vertical positions x,y and slopes ', 3" are used. These
transverse coordinates of a particle are represented by the 4-dimensional vector

~

(5.1)

e 8 8

~
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The transfer matrix therefore becomes a 4 x 4 - matrix M. The different
elements of the accelerator are taken into account by point-like interactions,
i.e. a kick is applied to the particle while the position remains the same. This
approximation is valid if the betatron phase does not change much while the
particle traverses the structure and the optical functions are also approximately
constant over the length of the element.

The effect of such a point like element on the macro-particles can be written

as!

z; = 2z;+ 0z
g; = €;+0¢; (5.2)
£ o=t

corresponds to the horizontal and vertical kicks caused by these elements. For
the drift sections between the elements, a linear transfer matrix M is assumed

My Mz 0 0
Mo May 0 0

M = 4
00 My My | (54)
0 0 Mys My
with the non-zero components:
Mii(ef) = exp <——> %COS(%(Q)) (5.5)

!The symbols z}, ef and ¢} indicate the coordinates after the interaction with the i-th
element, before traversing the i-th arc-section of the ring.
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Mua(e]) = \/Briv1Beisin(Vi(e])) (5.6)

Moi(e]) = exp <—Ti>;sin(\lli(5f)) (5.7)

Te/ ) Beiv1Pe,

Mafel) = f—(@()) (5.8)
Mss(ef) = exp (—%), %cos(\h(s;‘)) (5.9)

Mza(e]) =/ Byit1Byisin(¥i(e7)) (5.10)

T; 1 : .
M43(5:) = exXp <_7‘_y> m sm(‘lli(ei)) (511)

Mas(e?) = % cos(Wi(21)) . (5.12)

Here the following definitions have been used:

Qi
i = (B, +¢; 5.13
u = (Bt+eirg, (5.13)
E, + ¢}
Q. = U, Vo (5.14)

Ti(e) = @ l1+ <5E_"> (& - %u)] (5.15)

The symbols used in the previous equations are summarised in the following
list:

Ty ... Revolution time of the reference particle,

T; Transit time of the reference particle through sector i,
E, ... Nominal energy of the particles,

o? ... Natural RMS energy spread,

Te ... Energy damping time,

Ty, Ty ... Horizontal resp. vertical damping time,

U, ... Synchrotron radiation energy loss in the i-th sector,
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& ... Chromaticity in the i-th sector, £ = (6Q/Q)/(0p/p) = Q'/Q

« ... Momentum compaction factor: o = (6C/C)/(dp/p)
(accelerator circumference C),

n ... Momentum slip factor n = a — 1/72,

o7 ... Betatron phase advance of the reference particle in sector ¢

Ba,is By,i - . horizontal and vertical 3-function

B, By ... average horizontal and vertical J-function at the i-th element,
5= R/Q.

The equations of motion for the drift sections between the elements can now

be written as

z;v1 = M(el) -zl + R,

where

takes into account the quantum excitation due to synchrotron radiation (R

- R

7

|'Ti
Ei+1 = 6: — U; + 20'2 T—ORZ(5)
€

e+ E, In(1+ Q)

ti-l—l = t:+aﬂ[

Er Qz
2¢; /B:DTU RZ(I)
Tx
26,5 (2)
— R
:ETUTZL‘ '
R, =
QGyﬂyTg RZ(B)
Ty
26y o)
ByTOTy !
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(5.19)
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1

are random numbers used to simulate this quantum effect).
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The vertical and horizontal beam emittance €,, €, can be determined by the
input parameters beam emittance £ and coupling factor «:

E

E, = T+ r (5.20)
KkE

& = T (5.21)

If k is set to zero, the vertical emittance vanishes, unless there are some
elements that introduce horizontal-vertical coupling, e.g. skew quadrupoles,
solenoids or 3-D impedances causing wake field coupling.

5.2 Machine elements

RF cavity

While traversing the accelerator, the particles lose energy due to synchrotron
radiation and wake fields induced in the cavities and various other vacuum
components. This energy must be replaced by the RF voltage. Using the
following symbols

VEE - amplitude of the RF voltage,
Wit . angular frequency of the RF wave,
0K ... phase angle of the synchronous particle w.r.t. the RF wave,

0z;,0z; ... longitudinal and transverse kicks due to the wake field,

the interaction of the macro-particles with a cavity can be written as

= i+ oz (5.22)
= g+ 6g; + eV sin(®F + wf't). (5.23)

A

Impedance

At any cross-section variation of the vacuum chamber, e.g. bellows, separators
etc., the beam induces wake fields which result in kicks on trailing particles.
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The effect of the impedances is like that of RF cavities with RF voltage V' =
0, i.e.

z; + 0z; (5.24)

N

SR

where dz; and de; are the longitudinal and transverse kicks due to the wake
field.

Skew quadrupole

A source of horizontal vertical coupling may be skew quadrupolar fields due
to localised magnets, or due to misalignments of normal quadrupoles. Skew
quadrupoles can be approximately described using a thin-lens approxima-
tion [RS94], where it is assumed that the focal length of them is much larger
than their physical length. The transfer matrix for these elements is

1 000
01 k0
M = 0010l (5.26)
k0 0 1
where the quadrupole strength & has dimensions m!. It is given by
elg
k=—, (5.27)

p

when [ is the length of the magnet, g the field gradient, and p the average
momentum of the particles.

Kicker

Another type of machine elements are the kickers, e.g. used for the simulation
of feedback systems.

= z;+ 0z; 5.28)

™
% S
™
~
—~
e
DN
e
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where

5z; = g“"” , (5.30)

Sy;

oz, 0y are the horizontal and vertical deflection angle. It is assumed that there
is no dependence of the deflection angle on the position or energy deviation of
the particle.

5.3 Wake field representation in TRISIM3D

5.3.1 Axially-symmetric structures

The total wake field in an axially symmetric structure can be expressed as a
sum over the wake fields of the multipole components of the exciting charge
distribution. The fields due to the m-th multipole component have themselves
the same azimuthal dependence. Furthermore, the wake force on a trailing
particle scales like (a/b)*™ in the longitudinal case, and as (a/b)*" ! in the
transverse one, where b is the beam-pipe radius and a the transverse beam
size, if the force comes from a cavity structure of a size comparable to the pipe
radius ([Cha93] §2.1). Since in general the beam pipe radius is much larger
than the transverse beam size (b > a) the longitudinal effects are dominated
by the m = 0 mode, and the transverse effects by the dipole mode m = 1.

Normally the wake force F is a complicated function of time and spatial po-
sition. For high energy particles the trajectory is not much perturbed while
traversing a structure. It is therefore useful to introduce the integral over the
force along a straight trajectory

[
U:/ Fds . (5.31)
0

Given the response W, of a structure to m-th multipole moment of a point
charge, also called wake-function, or d-function wake, the integrated force on
a trailing particle can be derived. Neglecting contributions from higher-order
multipole components of the source charge, and employing a Cartesian coor-
dinate system, one gets ([Cha93] §2.2):
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Uj(z) = —eqWy(2)e,,
U,(z2) = —eqWi(z)Te,, (5.32)
Uy(z) = —eqgWi(z)yey,

where z is the distance between source and test charge, z,7y are the horizon-
tal resp. vertical position of the source charge, ¢ its charge and e,, e, are the
transverse and e, the longitudinal unit vector in the moving coordinate sys-
tem of the source charge. The longitudinal wake field for the m = 0 case is
independent of the transverse position of both the source and the test charge,
while the horizontal and vertical kicks depend linearly on the offset of the
source charge. Therefore the horizontal and vertical motion is decoupled for
the m = 1 transverse wake fields. If the source of the wake field consists not of
a single charge but a charge distribution, one has to integrate over this distri-
bution to get the resulting kick on a trailing particle. The integrated impulse
(kick) acting on a unit test charge is usually refered to as wake potential w,
and has the components:

w,(s) = —es/)\(s)Wé(E—s)dS,
wo(3) = —e, / As) 2(s) Wi (5 — s) ds , (5.33)
w,(5) = —ey/)\(s)gj(s)Wl(E—s)ds.

Here s is the coordinate of the exciting charge distribution, 5 the position of
the test particle, and the following definitions have been introduced:

As) = /pc(x, Yy, s) dxdy ,
_ 1
z(s) = o) /:v pe(,y,s) dedy , (5.34)

y(s) = ﬁ/ypc(x,yﬁ) drdy .

when p.(z,y, s) is the charge distribution. The details of the derivation can be
found in [Sab94a]. For a macro-particle distribution the equations are valid,
but one has to use an averaged continuous density function.
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To illustrate the situation in a axially symmetric structure, the transverse wake
potential induced by a beam with a Gaussian longitudinal distribution is shown
in Figure 5.1 for a circular “pillbox” cavity with side-tubes. A small circle
indicates the position of the beam. The beam has no azimuthal dependence
For a finite beam offset all multipole
components are excited in the structure. As can be seen clearly, the kicks on
a trailing particle are practically independent of the transverse position, and
are always in radial direction. The transverse kicks for an on-axis beam are

and no transverse spatial extension.

negligible.
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Figure 5.1: Transverse kicks as function of horizontal and vertical position in
a axial symmetric structure for different beam offsets, the beam
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Chapter 5 TRISIM3D

Up to now it has been assumed that the wake function of a point charge is
known for the structure. Only for a few simplified structures the wake function
can be calculated analytically (see e.g. [KZ97]). The numerical computation
of the wake function in time domain also does not lead to satisfactory results,
despite some approximations which have been suggested [Kei72, BW80, BZ82].

For a simulation program it has therefore been found advantageous to use
a set of basis-functions with finite length and to expand the actual charge
distribution in terms of them. Since the equilibrium bunch distribution at
low intensities is Gaussian, the first choice was a series of Hermite polynomi-
als [Nys87, Wan90]. The wake potential tables for polynomials up to the 6-th
order were precalculated for several bunch lengths and for azimuthal orders
m = 0 and m = 1. This yielded 15, look-up tables, each one a 25x640 array,
which had to be stored. For higher currents - close to the stability threshold -
the bunch distribution becomes usually more and more non-Gaussian. A suffi-
ciently accurate representation of the distribution using Hermitian polynomials
would require a larger number of terms of the series expansion.

To overcome this limitation a set of linear basis functions was introduced [Sab95a].
An arbitrary distribution can be well approximated using a suitable number
of triangular shaped basis functions. The number of wake potential tables
needed can thereby be limited to a single one for each direction, a m=0 wake
for the longitudinal direction and a m = 1 wake for one transverse direction.
The expansion of a multi-particle distribution using such triangles is also very
efficient in terms of computing time. However, for the simulation of short
bunches one needs to calculate the wake potentials of very short triangular
bunches. Due to the discontinuity in the first derivative of triangles, high fre-
quencies are excited and their computation demands very small longitudinal
mesh step sizes. By using Gaussian basis functions for the simulation of very
short bunches it was found that these problems can be avoided [Mei97]. The
drawback is a somewhat longer time needed for the expansion of the macro-
particle distribution.

In the simulation program TRISIM3D, as can be guessed from its name, tri-
angular shaped basis functions were chosen. This choice was made since CPU
time is critical issue for the simulation in all 3 spatial dimensions. However,
an option can easily be implemented to allow the choice of Gaussian basis
functions.
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5.3.2 Non-axially-symmetric structures

To describe the wake potentials in non-axially symmetric structures the in-
troduction of the so called generalised impedance concept is necessary. The
magnitude of the wake fields no longer only depends on the offset of the source
charge, but also the transverse position of the test charge will influence the
magnitude and direction of the kicks 2. In this case, the wake fields induced in
structures which are not axially symmetric can generally be written as a series

oo o0

w(r,F,s) =Y > r"F W, (1, T, 5). (5.35)

n=0 m=0

where r resp. r are the radius vectors of source resp. test charge position and
s the distance from the bunch head. In a Cartesian coordinate system the
horizontal component of this series can be written as

(o o2 cINe OlNe o]

W(x) (x’ Y, j" g’ Z Z Z Z xzykxnymwz k)n m(x Y, x ya )

1=0 k=0 n=0m=0

and equivalent expressions for the other directions®, here z, y resp. z, y are
the transverse coordinates of test resp. source charge.

The aim is to find the components of this series which yield the major contri-
bution. Similar as for the axially symmetric case, there are only a few com-
ponents important to describe the wake field response of a structure sufficient
accurately.

As mentioned before, most structures used in accelerators still have one or more
symmetry planes. Therefore simply for symmetry reasons many of the terms
in Eqn. 5.36 vanish. The LEP shielded bellows model, introduced in §4.4.2,
will be employed as an example of an elliptic structure. The dependence of
the kicks on the transverse position of source and test distribution is shown
in Figure 5.2. A conspicuous difference to the axially symmetric case is that
the transverse kicks for an on-axis source beam are no longer negligible. The
patterns for a source beam with offset are no longer simple dipole fields, they
resemble the field pattern in a quadrupole.

2The variation of the longitudinal impedance with transverse displacement can be used
to determine the transverse impedance [NS79].

(2)

*The indices of w,%

test charge.

(z,y,%,7,s) refer to the power of the coordinates of source and
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Figure 5.2: Transverse kicks as function of horizontal and vertical position in
an elliptic structure (LEP shielded bellows) for different beam off-
sets, the beam position is indicated by a small circle.

The kick due to the quadrupolar field, induced by an on-axes beam, only
depends on the offset of the test charge. One can therefore subtract these
fields from the fields for an beam with finite offset. The results are shown
in Figure 5.3. Like for the symmetric structures, the patterns resemble now
simple dipole fields, similar to those of axially symmetric structures. The
magnitude of the dipole component depends mainly on the offset of the source
charge, only for very large relative displacement of the test charge there is
some distortion of the dipole field visible.

Neglecting higher order components, the transverse wake effects can be well
approximated by a superposition of a dipole and a quadrupole wake compo-
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Figure 5.3: Transverse kicks reduced by the kicks due to an on-axis beam in an
elliptic structure (LEP shielded bellows) for different beam offsets,
the beam position is indicated by a small circle.

nent?

W (2,y,7,5,5) & 2 Wil o0(2, ) + T Wi 1 o(7,5), (5.36)
W(y) (.’L‘, Y, ja y: S) ~ yw%,o,o(% S) + gw(()?g,l,o(ja S)' (537)
For the simulation program there are essentially 5 wake tables per machine
element needed to describe elliptic structures with this first order approxima-

4The superposition of a quadrupole and a dipole component of the fields is the reason for
sometimes very small horizontal loss factor in non-axially symmetric structures (see Chapter
4). When the dipole and the quadrupole component are of the same order of magnitude
they may almost cancel each other.
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tion, one for the longitudinal and two for each transverse direction. The major
difference to axially symmetric structures is this offset dependent quadrupolar
wake potential acting on a trailing particle.

The contributions of transverse coupling terms was found to be weak, e.g.
an additional vertical offset does not significantly change the horizontal wake
potential. Their possible influence on the particle motion will be investigated
in chapter 7.
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Electrostatic Separator:

The second non-axially symmetric LEP structure used for the TRISIM3D runs,
are the electrostatic separators. Even though the structure is not elliptic, the
field patterns are quite similar to those of the elliptic bellows (Fig.5.4).

ymm 1 \ \ \ ~ v mm P A S G
0.0 ® - - - 0.0 . — O . .
T O T O N N Y A A A
I A R R o S
O R I A A 4
I s S S S S S
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X mm X mm

Figure 5.4: Transverse kicks as function of horizontal and vertical position in
a LEP electrostatic separator for different source beam offsets, the
position of the beam is indicated by a small circle.

If one subtracts the quadrupole component from the fields of a beam with finite
offset, the pattern resembles again a simple dipole field (Fig.5.5). In addition
there are again some weak higher order components which can be seen clearly
for larger beam offsets, but since the contribution of the separators to the
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transverse impedance of LEP is only about 10%, these higher order components
will not have a strong influence on the particle motion.
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Figure 5.5: Transverse kicks reduced by those due to an on-axis beam as func-
tion of horizontal and vertical position in a LEP electrostatic sep-
arator for different source beam offsets, the position of the beam
is indicated by a small circle.
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5.4 Machine model

The number of structures in a large accelerator, whose wake-field kicks have
to be taken into account, is too high to consider each one separately. It would
lead to very large CPU-time consumption, since it increases linearly with the
number of elements. Therefore many elements have to be grouped together
in a few, typically less than 10 elements. One thus concentrates the effects of
many into a few elements. The dependence of the simulation results on this
number of elements is not very strong, as was shown in [Sab95a).

A recent measurement of the longitudinal energy loss in LEP provides a suit-
able machine model for LEP (Fig. 5.6 [A197]).

2001 | Closed Orbit Shift, all wigglers on
100+t ‘}\XL RFinpt6 |1
dl/mA 0.292
= loss  V/pC
© 0 ‘ ‘ IP2  177.9 |H
LIIJ 1P2 ‘| P4 1 P6 ‘| P8 P4 75.3
IP6 -356.4
P8 584
-100+ Arc 44.8
Tot 5343
-200¢+ . . . . . .
0. 5. 10. 15. 20. 25. 30.
skm

Figure 5.6: Closed orbit shift in LEP

In this experiment the closed-orbit shift was measured as function of the bunch
current . The RF cavities in LEP are located close to the interaction regions
[P2, IP4, IP6 and IP8. Only the cavities in one point were powered (IP6 in
Fig. 5.6). Due to many distributed impedances the bunch looses energy, while
traversing the arc sections, which can be seen as downwards slope of the curve.
At the IP’s with the inactive cavities, a sudden drop of the orbit displacement
caused by the high energy loss in the cavities in points 2,4 and 8 is clearly
visible. All the energy lost along the ring is replaced in the powered cavities
in point 6.
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The corresponding machine model for the simulation program is shown in
Figure 5.7.

TRISIM3D V1.0 - LEP Machine Model A

lMachine Start

Machine Element

arc impedance
impedance pt2
arc impedance
impedance pt4
arc impedance
impedance pté
arc impedance
impedance pt8

W J o0 Ul b WN B

Figure 5.7: Machine Model A: Complete LEP machine model for TRISIM3D

However, for many applications even simpler models can be used. As a general
rule, if several elements of a machine model are combined into a single one, the
effects are always stronger. This rule can be easily be explained by imagining
a machine model with only one element. For certain parameter settings a
resonance condition can be fulfilled, i.e. the kicks at successive turns can be
in phase with the oscillation of a particle. The integer parts of the transverse
tunes do not have any influence in this single element machine model. If one
splits the impedance into more elements, the phase advance between elements
depends now additionally on the integer tune which may result in avoiding the
resonance condition.

Since the CPU time increases linearly with the number of elements, it saves
quite some time, if one uses a simple model to make rough scans over parameter
settings, and to use a more detailed model later, to make more precise studies.

99



Chapter 6

Applications and Results

The results presented in this chapter cannot represent a comprehensive analysis
of the underlying physics. Only a few qualitative studies of some effects,
emerging from the capabilities of a 3-D program, will be presented. They
are meant to be examples of possible applications of the simulation program.

6.1 LEP Machine Configuration

The number and type of vacuum components installed in the different sections
of LEP are listed in Table 6.1, the values are for the LEP configuration of 1997.
The major contribution (~80%) to the longitudinal impedance comes from the
super-conducting and copper cavities, while to the transverse impedance also
the shielded bellows contribute with about 30 %. There are only two types
of unshielded bellows in the list of elements which are representative for a
larger number of different kinds of these bellows in the real machine. The
number of installed items was obtained from the impedance database program
ZBASE [Brii96]. This database was set up to keep track of the steadily varying
number and types of vacuum components installed in LEP and LHC, as far as
they are relevant for collective effects.

The machine model employed for the studies in the next sections will be one
of the following three models:

e Model A : The machine is represented by 8 elements. The impedance
of the elliptic shielded bellows is divided into four arc sections.
The cavities and other components are grouped, corresponding
to their number, into four different elements representing the
straight sections.
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‘ LEP ‘
element pt2 | ptd | pt6 | pt8 | total
copper cavity cell 130 | — [ 300 | — | 430
SC - cavity module 16 | 18 | 8 18 60
SC - cavity taper 4 5 2 4 15
separator 12 | 13 | 12 | 13 50
unshielded bellows short || 40 | 40 | 40 | 40 | 160
unshielded bellows long || 30 | 30 | 30 | 30 | 120
elliptic shielded bellows 2750 2750

Table 6.1: Number of LEP structures 1997

e Model B : In this 2 element model, all straight section elements are com-
bined into one machine element, also the elliptic shielded bel-
lows will be represented in one element.

e Model C: The simplest model of the three consists only of one machine
elements in which all wake potential effects are concentrated.

As mentioned before, the CPU time increases linearly with the number of
elements, therefore the simpler models B and C are employed for parameter

scans.
The wake potentials of the different structures combined in an element are
combined with the subprogram TTAB3D and weighted with the averaged val-
ues of the beta-functions at their locations. As an example, the output of this
program for the vertical dipole wake potential (m=1) for the single-element
model is shown in Figure 6.1.
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Figure 6.1: Vertical wake potentials combined into one machine element: LEP
90/60 optics, year 1997, 20 ps triangles.
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6.2 Horizontal-Vertical Wake Field Coupling

To study the effects of wake field coupling, the machine model C will be
used. The wake potential components w;f;2 and wg(fé),y, which were found to
be the strongest coupling components, lead to a coupling between the motion
in the two transverse planes. We examine the effect of this coupling on the
macroscopic motion of the bunch. The first simulation run was started with
the horizontal-vertical coupling switched off, after 6000 turns the coupling is
switched on, indicated by a dashed line in Figure 6.2, page 104. There are no
significant changes visible, neither in the position nor in the beam-sizes. There
are some fluctuations of the transverse beam positions, but these are due to
the quantum excitation simulated with random numbers. For comparison the
results for a run, in which the coupling remains switched off, is shown in Fig-
ure 6.3, page 105 (the same set of random numbers was used). The reason for
the lack of any influence of the coupling is the magnitude of the resulting kicks
(Figure 6.4). The kicks due to the coupling wake-potential are several magni-
tudes smaller than those of the vertical one. Amplifying the strength of the
coupling wake, by multiplying the kicks due the wake potentials with a factor
Cepl, 18 shown in Fig.6.4, page 107. The strength of the kicks is multiplied by a
factor of 10 each 5000 turns. When the multiplication factor reaches 10%, the
wake field coupling gets bigger than the dipole one, and the sum of both both
added lead to loss of particles.

This large ratio between kick strength due to the dipole and the wake potential
coupling is certainly an overestimate, since only the strongest coupling compo-
nent has been taken into account. Furthermore, it was assumed that all struc-
tures are perfectly aligned, since the coupling components scale quadratically
with the offset of the beam in the other transverse direction, any misalignment
would therefore lead to an large increase of the coupling strength.

103



Chapter 6 Applications and Results

TRISIM3D - SSIMULATION OF COHERENT INSTABILITIESAT LEP
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rmbae01 RUN DATE: 11/10/97 TIME: 17. 23. 36 page 1/2 “

Bunch Current (0.3+1*0) mA Beam energy 22 GeV Coherent Syn. Tune 0.122

Total RF Voltage 342.216 MV Number of particles 3000 Bunch Center -35.357 ps

Hor. Betatron Tune 102.29 Number of turns 6000 Bunch Length 35.916 ps

Ver. Betatron Tune 76.27 Longitudinal Wake ON Horizontal Bunch Width 0.657 mm
Synchrotron Tune 0.12 Horizontal Wake ON Vertical Bunch Heigth 0.074 mm
Radiation Loss 18.989 MeV Vertical Wake ON Mean energy -0.001 MeV
Damping Time 0.103 s Basis Function : 20 ps half width Energy spread 39.498 MeV
Energy Spread 36.4 MeV Wake Potential : 6.667 ps steps Total loss (MeV) 26.749 MeV

‘ Total CPU time : 1148.5

8s

‘ Time for wake calculation : 118.136 s

Figure 6.2: Wake potential coupling switched on at 6000 turns: LEP 90/60
optics, year 1997, 20 ps triangles.
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‘ TRISIM3D - SSIMULATION OF COHERENT INSTABILITIESAT LEP H
‘ INPUT FILE NAME: rmbae02 RUN DATE: 12/10/97 TIME: 0. 8. 55 page 1/2 “
Bunch Current (0.3+1*0) mA Beam energy 22 GeV Coherent Syn. Tune 0.122
Total RF Voltage 342.216 MV Number of particles 3000 Bunch Center -35.357 ps
Hor. Betatron Tune 102.29 Number of turns 6000 Bunch Length 35.916 ps
Ver. Betatron Tune 76.27 Longitudinal Wake ON Horizontal Bunch Width 0.657 mm
Synchrotron Tune 0.12 Horizontal Wake ON Vertical Bunch Heigth 0.074 mm
Radiation Loss 18.989 MeV Vertical Wake ON Mean energy -0.001 MeV
Damping Time 0.103 s Basis Function : 20 ps half width Energy spread 39.498 MeV
Energy Spread 36.4 MeV Wake Potential : 6.667 ps steps Total loss (MeV) 26.749 MeV
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‘ Total CPU time : 697.797 s ‘ Time for wake calculation : 98.371 s “

Figure 6.3: Wake potential coupling off: LEP 90/60 optics, year 1997, 20 ps
triangles.
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Figure 6.4: Vertical kicks due to the vertical and the vertical-horizontal cou-
pling wake potential.
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‘ TRISIM3D - SSIMULATION OF COHERENT INSTABILITIESAT LEP
‘ INPUT FILE NAME: rmbcpO1 RUN DATE: 11/10/97 TIME: 21. 29. 6 page 1/5
Bunch Current (0.3+4*0) mA Beam energy 22 GeV Coherent Syn. Tune 0.123
Total RF Voltage 342.216 MV Number of particles 3000 Bunch Center -35.352 ps
Hor. Betatron Tune 102.29 Number of turns 5000 Bunch Length 36.047 ps
Ver. Betatron Tune 76.27 Longitudinal Wake ON Horizontal Bunch Width 0.657 mm
Synchrotron Tune 0.12 Horizontal Wake ON Vertical Bunch Heigth 0.074 mm
Radiation Loss 18.989 MeV Vertical Wake ON Mean energy 0 MeV
Damping Time 0.103 s Basis Function : 20 ps half width Energy spread 39.634 MeV
Energy Spread 36.4 MeV Wake Potential : 6.667 ps steps Total loss (MeV) 26.746 MeV
Input parameters and selected options of TRISIM3D Average Values ( last 1000 turns)
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‘ Total CPU time : 2377.05 s ‘ Time for wake calculation : 244.697 s

Figure 6.5: Wake potential coupling increased by a factor 0f 10 each 5000 turns.
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6.3 Coupling Due to Skew Quadrupoles

The coupling due to wake potentials was found to be weak. Another possible
source of horizontal-vertical coupling are skew quadupolar fields. The machine
model used is the two element model B with an additional skew quadrupole
element. The emittance coupling factor « will be set to zero, the natural
vertical emittance will also vanish (Eqn. 5.21). The vertical beam size would,
due to radiation damping, also be zero if the skew quadrupole is not powered.
For a finite initial vertical beam height, this situation is shown in Figure 6.6,
page 109. In the vertical initial conditions are zero also the beam size remains
zero (Figure 6.7, 110).

When powering the skew quadrupole the vertical beam size increases depend-
ing on its strength. This growth is shown in Fig. 6.7.
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‘ TRISIM3D - SIMULATION OF COHERENT INSTABILITIESAT LEP

‘ INPUT FILE NAME: skqd3dn0000 RUN DATE: 11/10/97 TIME: 9. 26. 8 page 1/1
Bunch Current 0.3mA Beam energy 22 GeV Coherent Syn. Tune 0.123
Total RF Voltage 342.216 MV Number of particles 3000 Bunch Center -35.295 ps
Hor. Betatron Tune 102.29 Number of turns 9000 Bunch Length 34.109 ps
Ver. Betatron Tune 76.27 Longitudinal Wake ON Horizontal Bunch Width 0.733 mm
Synchrotron Tune 0.12 Horizontal Wake ON Vertical Bunch Heigth 0.005 mm
Radiation Loss 18.989 MeV Vertical Wake ON Mean energy -3.166 MeV
Damping Time 0.103s Basis Function : 20 ps half width Energy spread 37.973 MeV
Energy Spread 36.4 MeV Wake Potential : 6.667 ps steps Total loss (MeV) 26.703 MeV
Input parameters and selected options of TRISIM3D Average Values ( last 1000 turns)
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Figure 6.6: Damping of the vertical beam size.
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TRISIM3D - SSIMULATION OF COHERENT INSTABILITIESAT LEP

‘ INPUT FILE NAME: skqd3dob RUN DATE: 13/10/97 TIME: 1. 53. 57 page 1/1 H

Bunch Current 0.3mA Beam energy 22 GeV Coherent Syn. Tune 0.123

Total RF Voltage 342.216 MV Number of particles 3000 Bunch Center -35.444 ps

Hor. Betatron Tune 102.29 Number of turns 6000 Bunch Length 33.438 ps

Ver. Betatron Tune 76.27 Longitudinal Wake ON Horizontal Bunch Width 0.725 mm
Synchrotron Tune 0.12 Horizontal Wake ON Vertical Bunch Heigth 0mm

Radiation Loss 18.989 MeV Vertical Wake ON Mean energy -3.166 MeV
Damping Time 0.103s Basis Function : 20 ps half width Energy spread 37.257 MeV
Energy Spread 36.4 MeV Wake Potential : 6.667 ps steps Total loss (MeV) 26.815 MeV
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‘ Time for wake calculation : 58.967 s

Figure 6.7: Zero vertical beam size.
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‘ TRISIM3D - SSIMULATION OF COHERENT INSTABILITIESAT LEP H

‘ INPUT FILE NAME: skqd3dOc RUN DATE: 13/10/97 TIME: 2. 29. 21 page 1/1 H
Bunch Current 0.3mA Beam energy 22 GeV Coherent Syn. Tune 0.123
Total RF Voltage 342.216 MV Number of particles 3000 Bunch Center -35.444 ps
Hor. Betatron Tune 102.29 Number of turns 6000 Bunch Length 33.438 ps
Ver. Betatron Tune 76.27 Longitudinal Wake ON Horizontal Bunch Width 0.725 mm
Synchrotron Tune 0.12 Horizontal Wake ON Vertical Bunch Heigth 0.002 mm
Radiation Loss 18.989 MeV Vertical Wake ON Mean energy -3.166 MeV
Damping Time 0.103s Basis Function : 20 ps half width Energy spread 37.257 MeV
Energy Spread 36.4 MeV Wake Potential : 6.667 ps steps Total loss (MeV) 26.815 MeV
Input parameters and selected options of TRISIM3D Average Values ( last 1000 turns)
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Figure 6.8: Vertical beam size due to skew quadrupole.
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6.4 Horizontal and Vertical Tune Shifts

One of the simplest methods to estimate the transverse impedance in an ac-
celerator is to measure the dependence of the transverse betatron tunes on
the beam current. The tune slope with current is directly proportional to the
effective impedance, i.e. the convolution of the machine impedance with the
bunch spectrum. The results of the computer simulation of LEP at injection
energy are shown in Figure 6.9. The machine model A with 8 equidistant
impedance locations has been used.

0.35 ‘ Transverse Tune Shifts

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 6.9: Horizontal and vertical tune as function of the beam current.

The slope of the horizontal and vertical tune with values of AQ,/AI = 0.036/mA
and AQ,/AI =0.08/mA is only about half of the values measured in LEP
(AQ. /AT = 0.07/mA, AQ,/AI =0.135/mA), but depend on the number of
turns averaged. However the ratio of horizontal to vertical tune is approxi-
mately the same as the one measured. A part of the difference between the
simulation and measurement is probably due to the neglect of the resistive wall
impedance, which causes a large tune shift of the m=0 mode, but has only a
moderate effect on the transverse mode coupling threshold. Furthermore, since
the effect of the quadrupole wake component depends on the transverse off-
set, of the beam from axis, another part of the difference might be due to
unavoidable closed orbit errors in the machine which are not included in the
simulation.
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Conclusions

The behaviour of particle motion is studied usually only in the longitudinal
and one of the transverse dimensions. The extension to 3 dimensions requires
a much more complicated description. New effects such as coupling of the
motion in the 2 transverse planes have to be included. This occurs due to
axially non-symmetric structures. Their usual replacement with symmetric
structures, for which the wake fields can be computed much more easier is not
always a sufficient approximation.

The 3-dimensional multi-particle tracking program TRISIM3D was developed.
As in its 2-dimensional predecessor TRISIM, triangular shaped basis functions
are used to describe the changing bunch shapes in the accelerator. The wake
potential tables, used as input for TRISIM3D, have been precalculated for
triangles of 10 and 20 ps length.

The minimum bunch length for which wake potentials of LEP structures can
be computed with the 3-D mesh program MAFIA on the CERN computers,
was limited to bunches of 5 mm r.m.s. length. Therefore a novel method
was developed to construct wake potentials of shorter Gaussian and triangular
bunches from longer Gaussian ones. The accuracy of this decomposition method
was found to be excellent, when the parameters are chosen correctly. The
agreement with directly computated wake potentials is within a few percent.

The main transverse wake field components of non-axially symmetric struc-
tures are the quadrupole and the dipole component. The latter is only pro-
portional to the offset of the exciting bunch, while the first one scales with the
displacement of the trailing particle.

The shielded bellows and separators in LEP were investigated intensively. The
slots between the sliding finger contacts of the bellows were found to have no
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strong influence on the wake potentials for the bunch length of 1 — 2 c¢m used
in LEP. The cross-terms which introduce coupling between the two transverse
planes were found to be rather weak. Therefore their effect in LEP was found
to be small in TRISIM3D. Nevertheless such effects could play an important
role in high intensity accelerators.

The limitations of computer resources, although steadily improving, do not
allow the computation of wake fields in large accelerator structures due to
bunches as short as actually used. The newly developed decomposition method
permits the extension of the results obtained with longer bunches to shorter
ones. Although the high frequency information is not obtained in this manner,
it is not required when the wakes are used in the expansion of longer bunches.
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