WAKE FIELDS AND IMPEDANCES

Wake fields (15 slides)

Impedances (8)

Generalized notion of impedance for asymmetric structures (24)
Dipolar and quadrupolar transverse impedances (and more)
1-wire and 2-wire bench measurements
Yokoya factors for dipolar and quadrupolar impedances

Impedance of an infinitely long smooth beam pipe (31)

Impedance and wake potential of a resonator (25)

Cut-off frequencies in a circular waveguide (7)

Examples of ElectroMagnetic simulations (17)

Example from CST => Wake field simulation of a collimator
A tertiary LHC collimator chamber with the HFSS code

A LHC graphite collimator with the HFSS code

The CMS vacuum chamber (in the LHC) with ABCI code
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WAKE FIELDS (1/15)

A beam of charged particles move around an accelerator under
the Lorentz force produced by the “external” electromagnetic
fields (from the guiding and focusing magnets, RF cavities etc.)

—_

F, = e( Eext +U xém)

ext

However, the charged particles also interact with their
environment, inducing image charges and currents which create

electromagnetic fields called “WAKE FIELDS” _
Perturbation

proportional to the
beam intensity

Therefore, the motion of the charged particles should be
computed considering these “perturbations”
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WAKE FIELDS (2/15)

The 2 fundamental approximations

1) The rigid-beam approximation

The beam traverses a piece of equipment
rigidly, i.e. the wake-field perturbation does
not affect the motion of the beam during the
traversal of the impedance

The distance z of the test particle behind
some source particle does not change

2) The impulse approximation

As the test particle moves at the fixed
velocity v = B ¢ through a piece of
equipment, what is important is the impulse
(and not the force)

Af)(x,y,z)=f dtﬁ(x,y,s=z+/3€f,f)=
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WAKE FIELDS (3/15)

Position of the source particle R

source

Position of the test particle

z < 0 and time-

Maxwell equations for a particle in the beam _
independent

—

E=5
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WAKE FIELDS (4/15)

—

Lorentz force V= e( E +U S xé)

, it yields
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WAKE FIELDS (5/15)
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WAKE FIELDS (6/15)

This relation is known as the Panofsky-Wenzel theorem
\Y xAﬁ(x,y,z)=O

For B = constant
It is very general as:

No boundary conditions have been imposed so far

Only the 2 fundamental approximations have been made
Rigid bunch
Impulse

B should be constant and does not need to be 1

Another important relation can be obtained when , taking
the divergence of the impuise
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WAKE FIELDS (7/15)

_JE, JE ds_JE,
gt ds di ot
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WAKE FIELDS (8/15)

Considering the case of a cylindrically symmetric chamber (using
cylindrical coordinates ), yields the following 3 equations
from Panofsky-Wenzel theorem

+ a 4th relation, when - :
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WAKE FIELDS (9/15)

We will consider the following source charge density. A macro-
particle of charge is assumed to move along the pipe (in
the s-direction) with an offset in the direction and with
velocity (equal to the bunch velocity)

using the relation
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WAKE FIELDS (10/15)

In frequency domain it gives

p(r,ﬁ,s;a))=§ Q, cos(m¥)

m=0 vytam”(1+(5m0)
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WAKE FIELDS (11/15)

Looking at the longitudinal electric field (Maxwell equation) yields

Ap.=Ap.cosm0

=> (from the previous equations) Ap. = A[A?,, cosmb Apg = A1A99 sinm6

and the 4 equations become
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WAKE FIELDS (12/15)
Form=0, AIA?,, = A]A?H J] | otherwise the 3" and 4th equations

would give a term inversely proportional to r, which is singular at 0

For m # 0, the 3" and 4t" equations give

S Ap,.(r,0,z)xr"" cosm@ g (Q) is the
charge of the
test (source)

The whole solution can be written as, form 2 0, particle

L
st ds=-qQa" r" cosmd W, (z)

0

L
UApr(r,H,z)=fFr ds=-qQa" mr" " cosm0 W, (z)
0

L
UApe(r,H,z)=fF0 dS=6]Qam mr"™ ' sinm6 Wm(Z)
0
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WAKE FIELDS (13/15)

W, ( e ) is called the transverse wake function of azimuthal mode
m and | (Z) is called the longitudinal wake function of

m

azimuthal mode m

They describe the shock response of the vacuum chamber
environment to a &—function beam which carries an mth moment

Mathematically, Q148 ( Z) resembles a Green’s function

The integrals (on the left) are called wake potentials

Longitudinal wake function
for m = 0 and transverse
wake function for m =1
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WAKE FIELDS (14/15)

From causality
(for v =)
> 0 just
after the source
=> Decelerating
force

< 0 just after the source
=> Same direction of the deflection
of the source
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WAKE FIELDS (15/15)

Units of the wake fields

Some comments on the wake fields

It is here for cylindrically symmetric structures => More involved
for asymmetric structures (e.g. quadrupolar wake field)

More involved when , as in this case there are also some
fields in front of the source particle
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IMPEDANCES (1/8)

The impedances are related to the wake functions by Fourier

transforms W

Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009



IMPEDANCES (2/8)

2 important properties of the impedances

As the wake functions are real, it can be shown that

As a consequence of the Panofsky-Wenzel theorem

Z,(0)=kZ, (o)
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IMPEDANCES (3/8)

What is the coherent part of the transverse SC impedance
(considering both electric and ac magnetic images)?

In the “SC course’”, we saw that
the coherent horizontal force in
a circular beam pipe is

Behind
the bunch

SC
Wl
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IMPEDANCES (4/8)

Fourier
Transform
(FT)

Remembering that [4) ( W ) is the Fourier transform of
(with a - j added for the transverse plane) one finally obtains
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IMPEDANCES (5/8)

Another (equivalent, i.e. giving the same result) way to define the
transverse impedance is often used and is given by

In time
domain

Finally, another (equivalent, i.e. giving the same result) way to

define the impedance is => For coasting beams ()

A [ is also sometimes added in the denominator
to cancel the velocity effect in the Lorentz force (magnetic part)
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IMPEDANCES (6/8)

What is the longitudinal SC impedance?

In the “SC course”, we saw that

the longitudinal space charge
force for a uniform bunch in a

circular beam pipe is

Depends on the
source (it is 0 for a -
function considered
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IMPEDANCES (7/8)

More general definition of the impedances (still for a cylindrically
symmetric structure)

dV =r dr dO ds

In
frequency
domain

In
frequency
domain
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IMPEDANCES (8/8)

As the conductivity, permittivity and permeability of a material
depend in general on frequency, it is usually better (or easier) to
treat the problem in the frequency domain (for a circular machine),
i.e. compute the impedance

It is also easier to treat the case [SEN!

Then, a Fourier transform is applied to obtain the wake field in the
time domain

General properties of impedances or wake fields
We already saw some of them before but there are more

Another one: Directional symmetry of impedance (Lorentz
reciprocity theorem) => Same impedance from both sides if the
entrance and exit are the same
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GENERALIZED NOTION OF IMPEDANCE (1/24)

Axi-symmetric structures => A current density with some
azimuthal Fourier component creates electromagnetic fields with
the same azimuthal Fourier component

“Usual” definition of the longitudinal
impedance (m=0,1,2,...) => In fact Q is
used here instead of Q,,

(5( r—a) cos(mﬁ ) e ks

where Em is the longitudinal electric field created by this
current density
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GENERALIZED NOTION OF IMPEDANCE (2/24)

Non axi-symmetric structures => A current density with some
azimuthal Fourier component may create an electromagnetic field
with various different azimuthal Fourier components => A more
general beam coupling impedance is defined in order to treat
coupling of different azimuthal Fourier components

More “general” definition of
the longitudinal impedance
(mn=0, 1, £2,...)

where is the longitudinal electric field created by this
current density
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GENERALIZED NOTION OF IMPEDANCE (3/24)

Therefore,
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GENERALIZED NOTION OF IMPEDANCE (4/24)

Consider the case of a source particle at X, =a, cosﬁl
and a test particle at X, =d, cosﬁz

y, =a, sint,

The source current density (at the source particle) is given by
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GENERALIZED NOTION OF IMPEDANCE (5/24)

Electric field
created by the
source in (1)

conjugate of the
current density of
the test particle
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GENERALIZED NOTION OF IMPEDANCE (6/24)

which yields, up to the 2"9 order,

Z=Zo,o+(x1_j)’1)Zl,o+(x1+j)’1)Z-1,0+<x2+j)’2)Zo,1
+(x _j)’2)Z -1"'(xl_j)’1)2zz,o+(x1_j)’1)(x2_j)’2)z1,-1
x2_jy2)Z—1,—1

(
( +J)’1) 20+(x1+jy1)(x2+jy2)Z_1’1+(x2+jy2)220’2

( J)’2) 02+(x1_j)’1)(x2+j)’2)21,1+(x1+j)’1)

Applying Panofksy-Wenzel theorem (remembering that the
transverse impedance is defined with an additional )

kZ'=V,Z

=> ka=£
dx,
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GENERALIZED NOTION OF IMPEDANCE (7/24)

The “general” transverse impedances Z, , (not normalized by the

transverse displacement) on a test particle at (x, = a, cosé,, y, =
a, sinf,) from a source at (x, = a, cosé,, y, = a, sin@,), are thus
given by (to 1st order)

kZ, = (ZO,I + 72, ) +@Zx +J Y (_ L =L+ 2L+ 71, )
+2 (ZO,Z + 2 )@"' 2 ( Loy =2y ) J Y,

kZ, =] (Zo,1 - Zy i )+@Zy +jx (- Lyt 2y =L+t 2o )
~2(Zoy + 2o o+ 2(202 - 205 )i %)

— Z)Ccirivjng _ Zx Ik ZJc/lriVing _ Zy Ik Zdetuning ~-_9 ( Z(),z n Z(),_z ) |k
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GENERALIZED NOTION OF IMPEDANCE (8/24)

2-wire measurements => Here , the current density by 2 wires
at is approximated by
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GENERALIZED NOTION OF IMPEDANCE (9/24)

11f m 1s even
—11f m 1s odd
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GENERALIZED NOTION OF IMPEDANCE (10/24)

Z=_éfdv 2 Ea\zmn\ Eo || 2 Ea‘zml‘sznn

m=—0oo n=-—0oo

_ 2m+1|  [2n+1]
=4 E a a Lyt 2ns
m.,n

2 2 2 2
=4 (a Zi,+ta /. +a Z_+a Z )

Up to 2"d order

=> |f the longitudinal impedance can be measured (simulated),
then the transverse (driving or dipolar) impedance can be
deduced from 2-wire measurements (simulations)
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GENERALIZED NOTION OF IMPEDANCE (11/24)

Usually the longitudinal impedance is calculated from the
Zzaracterlstlc impedance and the scattering parameter

Scattering parameter

Scattering matrix
S S, ) ( a, )
S Syu/\a,

Direct (forward) wave
/77777
Reflected (backward) wave
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GENERALIZED NOTION OF IMPEDANCE (12/24)

1-wire measurements => Here , the current density is
approximated by
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GENERALIZED NOTION OF IMPEDANCE (13/24)

_ 9 2 =20 2 29 2
W7 =A+ae ' A +ae’ A vate VA +at e A+ a’ A,

Ar =2 Up to 2 order
Ay =2y +Zy_,

Ay =2y, +Z_

Ay=2Zy0+ 2,1+ 2y,

As =Zy) +Z_y,+Z 5

Ag = L+ 2
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GENERALIZED NOTION OF IMPEDANCE (14/24)

If there is top/bottom and left/right symmetry (fortunately it is the
usual case...), the situation simplifies a lot

If a=x,and 6,=0
Z=A1+x§(A4+A5+A6)
= A, +xo[Z (Z20+202+Z—20 ZO,—Z)]

Scanning X,
gives a parabola

Ifa=y,and 6,=m/2
Z=A+y,(-A, - A5+ Ag)
_A"')’o[z (Zzo"'Zoz"'Z-zo Zo,-z)]
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GENERALIZED NOTION OF IMPEDANCE (15/24)

A/, +2,,=2y,+7Z,_ , BRUEL

Still has to be
demonstrated in
the general case

Z2,O + ZO,Z + Z—Z,O + ZO,—2 =7 ( ZO,2 + ZO,—2 ) — k Zdetuning

Z=A +kx [ 7 driving _ Zdetuning]

X X

Z _ Al + k yé [Z;lriving + Z;etuning]

Therefore, with 1-wire measurements, only the difference in x and
sum in y of the driving and detuning impedances can be obtained
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GENERALIZED NOTION OF IMPEDANCE (16/24)

If there is NO top/bottom or left/right symmetry, the situation is
more involved:

By scanning a and 6, (i.e. measuring Z for different values of a

Then, using the 2-wire technique the dipolar (driving)

impedances can be obtained: gdiving _ 74 Z;iriving _ Zy |k
X X

Then compute

LR Z> 0 +Z 20 =202t Zo,2

driving _ ~driving
Z X Zy _ A4 + AS

2 k
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GENERALIZED NOTION OF IMPEDANCE (17/24)

Both 1-wire and 2-wire techniques are required (in asymmetric
structures) to obtain all the information needed to correctly
understand/describe the collective effects in accelerators

With 2 wires the transverse dipolar (driving) impedances are
obtained

With 1 wire (scanning the wire position), and using the driving
impedances measured with 2 wires, the detuning impedance can
be deduced (IF a certain condition is fulfilled => Still to be
checked in which cases this relation is satisfied or not)

The coupling (and high order) terms are (usually) neglected, but
could also be important in some cases
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GENERALIZED NOTION OF IMPEDANCE (18/24)

Example of impedance measurement with 1 wire => Kicker KFA13
in the CERN PS

Re (Z) [Q] Re (Z) [Q]
10 600

1
105° 580
100 560
. 5.
[ ] Ferrite % 340 .
90 x
[ ] Conductors (Al) Xo [mm] — xo [mm]
l 100 mm -20 -10 10 20 -20 -10 10 20
Re (Z) [Q] Re (Z) [Q]
130 800 ¢
125 750 }
120 700
115 650 |
__________ 110 600 |
103 550 |
-
. . - - - — Yo [mm Vo (mMm
~15 -10 -5 510 1s Yo TS 510 13 Yo lmm]

Figure 3: Measured real part of the longitudinal
impedance (red dots) vs. (upper/lower) horizontal/vertical
offset at 200 MHz (left) and 1 GHz (right). The full black
line 1s the parabolic fit used to deduce the transverse
impedance.
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GENERALIZED NOTION OF IMPEDANCE (19/24)

Z+ Z,[MO/m]

0.25 |
021
0.15 |

01}
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GENERALIZED NOTION OF IMPEDANCE (20/24)

Example of impedance measurement with 2 wires => A MKE
kicker in the CERN SPS

Zotter

Burov—I ebedev

2—wire

2—wire / shielded

Res. loop (Re) / shielded
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GENERALIZED NOTION OF IMPEDANCE (21/24)

Yokoya factors for dipolar and quadrupolar impedances in
resistive elliptical pipes (compared to a circular one)
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GENERALIZED NOTION OF IMPEDANCE (22/24)

Form factors for a rectangular pipe : g = h-b
h+b

g8 and GHEY with PR _ .
. h h = pipe half —width

b = pipe half —height
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GENERALIZED NOTION OF IMPEDANCE (23/24)
Form factors for an elliptical pipe :

and u) with FErE

| ¢ |

(0.2 .4 0.6
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GENERALIZED NOTION OF IMPEDANCE (24/24)

Finally, the transverse impedances (dipolar and quadrupolar) should
be weighted by the betatron function at the location of the
impedance => This is what matters for the effect of a transverse
impedance on the beam

P, X /

/3 average 1

—>

X
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (1/31)

1) Maxwell equations

In the frequency domain, time derivatives are replaced by

Combining the conduction and displacement current terms yields
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (2/31)

2) Scalar Helmholtz equations for the longitudinal field components

Using curl curl = grad div — A SRR T 115 (using the circular

cylindrical coordinates r, 8, s and assuming the source velocity to
be along the s axis)

+—5—+—+wue |H =0

’/‘_
r* 00>  0s *

1 o 0*
ar

1 0p

2 .
+ — +—+oue |E=——+jw (
r’960°  9s’ 8 g 0s JOHP

]/'_
ar

)132 9’

The homogeneous equation can be solved by separation of

variables
HorE =0(0)S(s)R(r)
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (3/31)

— @(9 )= o im0 m is called the azimuthal mode number

(m=1 for pure dipole oscillations)

and k is called the wave number

The axial motion is seen to be a wave with phase velocity
which may in general differ from the beam velocity

R (r) is given by )

r
Radial propagation constant

The solutions of this differential equation are the modified Bessel

functions and
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (4/31)

3) Source of the fields: Ring-beam distribution = Infinitesimally short,
annular beam of charge and radius [g traveling with
velocity along the axis (equal to the bunch velocity)

Charge density in the frequency domain (see previous slides)
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (5/31)
Conclusion for the homogeneous scalar Helmholtz equations

For pure dipole oscillations excited by a horizontal cosine
modulation propagating along the particle beam, one can
write the solutions for H_ and E_ as

H =sin(m@)e ™ |C I (vr)+C,K,(vr)

C1,2,3,4 are
constants to be
determined

(vr)+C4 Km(vr)

Sine and cosine are interchanged for a purely vertical
excitation (see source fields)

Only the solutions of the homogeneous Helmholtz
equations are needed since all the regions considered are
source free except the one containing the beam where the
source terms have to be determined separately
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (6/31)

4) Transverse field components deduced from the longitudinal ones
using Maxwell equations (in a source-free region)
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (7/31)

5) Let’s consider the case of the transverse impedance (m = 1)

(2) Layer 1

(1) Vacuum
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (8/31)

Longitudinal source terms = Valid for , i.e. in the vacuum
between the beam and the pipe = region (1)

@M

and £t will be determined by the boundary conditions at b and d
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (9/31)
The transverse components (in the same region) are then
F(u)

EY(r,9,s) =y Csint
u

+ B oy Il’(u)}

Gy (r,9,s) ==ByCcost|F/(u)+
EY(r,9,s) =-yCcost

G (r,9,s) =-ByCsind
u

The quantity which enters in the transverse impedance is
Csin® F(u)
% U

=> It depends only on and NOT on !
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (10/31)
6) Field matching

At the interfaces of 2 layers (r = constant) all field strength
components have to be matched, i.e. in the absence of surface
charges and currents the tangential field strengths and

have to be continuous
S,

Matching of the radial components is redundant

At a Perfect Conductor (PC) : S dG, /dr=0
At a Perfect Magnet (PM) : ol L /dr=0

At r = Infinity = Only is permitted as I (x ) diverges
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (11/31)

7) The total (i.e. resistive-wall + space charge) horizontal impedance

_ JLZ (%) K (x)
ma By’

with L the length of the resistive pipe and YAERWIIF
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (12/31)

The “wall impedance” (and not the “resistive-wall impedance”) is
obtained by subtracting from the total impedance, the “incoherent
part” of the impedance (i.e. which does not depend on the wall, and
comes from the direct space charge interaction) given by

_jLZo Il('xo)Kl(XO)
nazﬁyz

ZfC,incoh ( f ) _
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (13/31)

The present formalism can also be used for any number of layers of
the vacuum pipe. The result for a single layer extending up to infinity
Is given below

VV(Pl—Q1)(ﬁxlxz)z(yvﬁ_kMQz) }
_kx1)2_(/3x1x2)2 (VVR_kMQz)(VVE_kngz)

VVﬁx1x2(P1_Q1)(vaz_kx1)
(vaz_kxl)z_(ﬁxlxz)z (VVP1_kM1Q2)<VVP1_k51Q2)

: kb L(x) K/(x) K/(x,)
th = _ = = =
.

Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 61/128




IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (14/31)

=jLZo 112(x0)K1(x1)
ma® By I(x)

Wall, 1layer
Z, (f)
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (15/31)

In the case of 2 layers, the situation is more involved and the
impedance is given by (for the single layer extending up to infinity)

_ jLZ, ]f(xO ) Kl(x1) where the parameters ( Ex)

ZWall,Zlayers( f) . . 2 f 4
X wd By Il(xl) are parameters out o

. , (, , [ and ), solutions
JLZ(>11<S)K1(XI)E (a, 1) of the system of 4 linear
wa’ By’ I ( X, ) A equations

)/szzEz(l_az)"'yvlexzﬁGz(l_nz)Pl =kx1E2(1—a2)+kx1x2ﬁM12G2(Q2—n2P2)
)/V2x2G2(1—172)+)/szlxzﬁ(Ql—Pl+PIE2(1—052))=kle2(l—172)+kx1x2[3812E2(Q2—Otsz)

+

0,-m, P

Vi Xy Ez(K32_a2[32)+V3x3x4/5.u12G2(Q32_772P32 )=V2x3 Ez(K32_O‘2[32 )+V2x3x4/3“13G2(K32_772[32) 41 -
-5

0, -a,P

v3x4G2(K32—772132)+v3x3x4[5812E2(Q32—a2P32 )=V2X3G2(K32_772132 )+V2x3x4[5813E2(K32—Ot2132) 41_(; :
3
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (16/31)

Re(Zx), 2.5 cm graphite + vac.

Same value

T 10° g\ fortor? 'aye"s: T | e Re(Z ), infinite graphite layer
a E IIm(Zx)I, 2.5 cm graphite + vac.
:’: 10’ E_..."b. --------- ||m(Zx)|, infinite graphite layer

"ii:iiY=u7T_~08

w—
o
»
T III|I|
=
QD
- q hendaca
S
X
<
1 o
=h
Q
0
—e
j
-

w1y N b =2 mm
g . Ppc =10 uf2m

_ ] m
104_ """"""""""""""""""" ',‘ ------------ L =1m
4 [ |

ro 1 T TTTHI

E ' ' ' ' E ; ; ; : ' L~

| lllllll 1 1 Illllll 1 1 lllllll | llllllI 11 llIllll | Illlllll | lllllll 1 1 lllllll | lIlIlll | lllllll 11 lllllll 1 1 l.lllll tan’ﬁ‘ 0
10> 10° 10* 10° 10° 107 10° 10° 10" 10" 1012 10" L)
Courtesy of F. Roncarolo f[Hz] v =480
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (17/31)

On a linear plot, a resonance is clearly seen near 1 THz. The

frequency of the resonance Jf§ is given by (when ,
which is the case here)

025 05 075 1 125 15
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (18/31)

Same value
for copper and graphite (i.e.

independent of condwy . | ===== Re(Z ), Graphite

IIm(Zx)I, Copper

. Re(Zx), Copper

I

N IIm(Zx)I, Graphite

@

xS
o
b

pggppef = 17 an

Copper _ 2 7x10—14

. . . . : . : . .
| IIIIIII| | Illlllll IIIIIIII| | Illlllll | IIIIIII| | IIIIIII| | IIIIIII| | IIIIIII| | IIIIIII| | lllllm..

102 10° 10* 10° 10° 10" 10® 10° 10" 10" 10"
Courtesy of F. Roncarolo f [HZ]
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (19/31)

EEEE Re(zx), B=0.3

; ! , Classical “thick-"\:
= ; H 1) . i
“Inductive 5 ; . wall” regime

o &

P | 1 \ i | | \ i
& o
| l’llllll | lllllll| | llllllll | IIIIIIII | Illlllll | lllllllI | Illlllll | llllllll | lIIIllII |

ammm Re(zx), B=1
IIm(Zx)I, 3=0.3
e IIm(Zx)I, B=1

High-frequency
regime

i 1
[
-
|| IllI | IIIIIIII‘I A YHITI

102 10® 10* 10° 10° 107 10® 10° 10" 10'" 102

Courtesy of F. Roncarolo
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (20/31)

7~ Coating with a thin layer

\_ (5 um) of copper for 8 = 1
\(P ) PP B’—___,.
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (21/31)

Example for a dielectric

6 '
1 layer of thickness 1 cm and then a PC p=10"QmENE = S

1 meter long round

FL T
HHH
T CTITT

A . M i : 1
e » TR
\ WM Iiles 11
1000 1L.x10° 1.x10° 1.x10" 1.x10P 1.x10° 1.x101° 1.x10" 1.x1022 1.x1013
/ [Hz] / [Hz]

1 meter long round

A, 1
= i S Wl
gl | ‘HHML.M !
1000 1.x10°  1.x10° 1.x102 1.x101 1.x10°  1.x101% 1.x10! 1.x102 1.x1013
J/ [Hz] f [Hz]
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (22/31)

1 layer of thickness 10 cm and then a PC

1 meter long round

=EH
T
[ LTI

==
-
[

\
1000 1.x10°  1.x10° 1.x102 1.x10!3
[Hz]

1.x10° 1.x101% 1.x10" 1.x102 1.x10%3
J [Hz]

1 meter long round
N

z 4

1
[ 4

1 layer of infinite thickness

1000 1.x10° 1.x10°
J [Hz]
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (23/31)

8) Approximate formula for the case of a LHC graphite collimator

The interesting frequency range in the LHC lies between few kHz and
few GHz. In this case a simple formula can be derived for a cylindrical
geometry, which should be valid for any “relatively” good conductor
with real permeability and the permittivity of vacuum. It can be written
as (up to a certain frequency which depends on f3)

with
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (24/31)

Furthermore, this equation can be simplified even further in the two
limiting cases using the following equations

L 1f |x2|<<1
= x,

-1 if|x2|>>1

When ‘xz <<1 , i.e. at very low frequency, the transverse “wall
impedance” approaches a constant inductive value

Only electric images contribute
as there are no ac magnetic images
when f= 0
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (25/31)

When , the “classical thick-wall formula” is recovered
(up to a certain frequency which depends on )

Coherent part (from the pipe) Classical thick-
of the SC impedance => Electric wall formula for
images + ac magnetic images the “RW?”
impedance

Note that the (broad) maximum of the real part of the transverse

impedance is reached when , 1.e. - , Which
means Re[ x2 ] - 1
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (26/31)

9) The same approach can be applied for the longitudinal plane
(m = 0)

10) Longitudinal and transverse SC and RW impedances and wake
fields in the “2n9” (“classical thick-wall”’) frequency regime

PC = Perfectly Conductor wall
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (27/31)
m=0 m=1

Used to compute the Used to compute the
longitudinal impedance transverse impedance

PCO PCO PCO
EFCO - BPCO_ Py

b

—)5'(S—vt)

r

EFCO - € 5(s-ut)
2meyr

BECO _ b EFCO 5
c _P pra
c r
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (28/31)

Force on a particle
with charge q

F=q|E,s+(E, -vBy )i+ (Eyg+vB, )5]
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (29/31)

m=1

Behind
the bunch
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (30/31)
Resistive object (with 8 = 1)

m=0

FrRWo

=F&" =0
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IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (31/31)

m=0 m=1

LZ, 1

nb® \2u, 0w

L y4 :
Z/’fWO(a))=(1+j)2—m ;06((; Z"(w)=(1+7)
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (1/25)
CAVITY RESONANCE
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (2/25)

RLC circuit equivalent to a cavity resonance

= Shunt impedance

= Capacity

= Inductance
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (3/25)

In a real cavity, these 3 parameters cannot easily be separated => We
use some other related parameters which can be measured directly

= Resonance (angular) frequency

= Quality factor

= Damping rate
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (4/25)

If this circuit is driven by a current /I, the voltages across each
element are

V=V,=V.=V, I=1,+1.+1,
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (5/25)
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (6/25)

Response of the RLC circuit (representing a cavity) to a &-function
pulse (= very short bunch) at timet=0

Courtesy of A. Hofmann
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (7/25)

The charge g induces a voltage in the capacity

Parasitic loss mode factor
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (8/25)

The charged capa will now discharge 1st through the resistor and
then also through the inductance

The voltage in this resonant circuit has now the initial conditions

V(07)=
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (9/25)
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (10/25)

=> A 2" point charge q’ going through the cavity at a later time t
will gain or lose the energy

U=q'V(t)

This energy gain/loss per unit source and unit test (probe)
charge is called the wake potential of a point charge or also the
Green function G(t)

When , it yields G(t)=2kpm e %! cos(@ t)
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (11/25)

Response of the RLC circuit (representing a cavity) to a harmonic
excitation

NS D

I(t)=I cos(wt)
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (12/25)

The solution of the homogeneous equation is a damped oscillation
which disappears after some time. We are left with the particular
solution

V(t)=Acos(wt)+ Bsin(wr)
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (13/25)

In phase with excitation Out of phase with excitation
=> Can absorb energy => Cannot absorb energy
=> Resistive term => Reactive term
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (14/25)

Complex notations (involving positive and negative frequencies, as
opposed to the only positive frequencies used before)

Looking for a particular solution (of the differential equation) of the

form V( t ) =V, e Bl , yields the impedance
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (15/25)

For a large quality factor, the impedance is only large for
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (16/25)

One can check that (using the useful relations in “Introduction”)

As there is no field
before the particles
arrive

20
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (17/25)

The Panofsky-Wenzel theorem requires that the same resonator
also gives a transverse impedance
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (18/25)

Example 1 in the longitudinal plane (resonator wake field)

R =20Q f =1GHz |J_|Q=1OO

A A

HHNERIA
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (19/25)

Example 1 in the longitudinal plane (resonator impedance)
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (20/25)

Example 2 in the longitudinal plane (resonator wake field)

GHz |0=1

R=20Q f =1
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (21/25)

Example 2 in the longitudinal plane (resonator impedance)
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (22/25)

Example 3 in the transverse plane (resonator wake field)

R =20MQ/m  f =1GHz O=T00]

lllllllll’llmnnnmn

LR CEACRACIALRL
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (23/25)

Example 3 in the transverse plane (resonator impedance)
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (24/25)

Example 4 in the transverse plane (resonator wake field)

R =20MQ/m  f =1GHz
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (25/25)

Example 4 in the transverse plane (resonator impedance)
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CUT-OFF FREQUENCIES IN A CIRCULAR WAVEGUIDE (1/7)

One distinguishes between (in vacuum)
TM (Transverse Magnetic) modes
TE (Transverse Electric) modes

See previous slides

) 1 9
r— |+ ——+—

or r*00*  9s”
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CUT-OFF FREQUENCIES IN A CIRCULAR WAVEGUIDE (2/7)

The solution of this differential equation is the mth Bessel function

R(r)=J,(k r)

2
with Fas ( E) - k? Radial wave number
C

See (before) general relations
between longitudinal and
transverse components

and WIREHNY if
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CUT-OFF FREQUENCIES IN A CIRCULAR WAVEGUIDE (3/7)

The propagation modes are determined by the boundary condition for

at the pipe radius

k — ] mn
r,mn b

where is the nth zero of the mth Bessel function
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CUT-OFF FREQUENCIES IN A CIRCULAR WAVEGUIDE (4/7)

The cut-off frequency of the TM_ . mode is defined by

Below this frequency propagation is not possible as in this case
and therefore 4 is not real

The lowest cut-off frequency is given by the 1st zero of the Bessel
function of 0t" order, which is
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CUT-OFF FREQUENCIES IN A CIRCULAR WAVEGUIDE (5/7)

However, in this case the boundary condition (at the pipe
radius )is BRI which is equivalent to (looking at the

relations between longitudinal and transverse components)

dB, -
dr

0
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CUT-OFF FREQUENCIES IN A CIRCULAR WAVEGUIDE (6/7)
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CUT-OFF FREQUENCIES IN A CIRCULAR WAVEGUIDE (7/7)

The cut-off frequency of the TE_, mode is defined by

Below this frequency propagation is not possible as in this case
and therefore 4 is not real

The lowest cut-off frequency is given by the 15t zero of the derivative
of the Bessel function of 1" order, which is

ji, =1.84
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (1/17)

Example from CST (Computer Simulation Technology: nttp:/iwww.cst.com/

Content/Applications/Article/Wake+Field+Simulation+of+a+Collimator) => Wake field
simulation of a collimator
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (2/17)
+ A tertiary LHC collimator chamber with the HFSS code

1500 mm
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (3/17)

=> One can already anticipate some resonances (trapped modes)
above the lowest (i.e. of the largest beam pipe radius b) cut-off
frequency

flowest [GHZ] ~ 10

cut-off b [Cm]

b = 2—;2 B IKXenl , the first resonance should be around 1 GHz

largest
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (4/17)
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (5/17)

E Field[¥/m]

1.0806=-+020
. 9.3388e-091
39.7555c-89L

‘ 3.13081=-041
7.504%7=-021
5.8793=-03L
5.2539=-0aL
5.6285c-89L
5.8831=-041
4.3777c-031
3.7523=-03L
3.1269=-04L
2.5016e-031L

1.87622-221
1.2585=-021L

. 8.2539=-0a2
2.0857=-029
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (6/17)
GHz
, =1.0857 O, =71139 R =121
. =1.0948 0, =7120.3 R, =75.2
0, 135.9 R, =18.1
1305 O, =7158.7 R, =302.6
1565 O, =7194.1 R, =158.3
1.1872 0 O, =7374.7 R, =74.8
2218 0. =8914.4 R, =555.6
2596 O, =4488.6 143.1
1.3000 O, =1743.3 3.8

,=13474 M0, =22200 R =116.0
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (7/17)

See GR’s talk

Power loss for mode i

M =3564
N, =1.15x10" p/b

f,=11245.5 Hz

o, =0.25ns
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (8/17)

Maximum power loss, assuming
that the resonance frequency is a
multiple of the bunch frequency

Power loss [ W]

9 Mode number
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (9/17)
A LHC graphite collimator with the HFSS code

COAXIAL WIRE METHOD |

GRAPHITE

Radius

wire

=0.5mm

Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 120/128




EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (10/17)

DOUBLE WIRE METHOD §
(X)

GRAPHITE

4

/-/ Distance
- /./"' between the 2 wires
7

dist. . =2 mm

wires

Radius

wire

=0.5mm
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (11/17)

DOUBLE WIRE METHOD
(Y)

GRAPHITE

dist. .. =0.6 mm

wires

Radius

wire

=0.2 mm
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (12/17)

Improved log formula for distributed
(i.e. not lumped) impedances

¢ Longitudinal = S,, is deduced from HFSS

Radius

wire

- Zc,,:éolog(l.mLJ

Also computed with
HFSS by Tsutsui

dist

———log| — Z, =120 ArcCosh| ———uze—
0 diSt;‘ires | | » 2 Radluswire _
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (13/17)

Longitudinal impedance => Real (imaginary) part in red (green)

Radius,,  =0.2 mm

AR L AR Dde L L R L [\IHZ
0.1 10 1000 4 ] 0.1 10 1000 J Mz

| — 11—

= (0.2 mm

| i L L 1

LU L L Lo [MHz
0.1 10 1000 s ] 0.001 0.1 10

wire

Radius,. =0.1mm = Radius
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (14/17)

Horizontal impedance

Ze [ L[Q /]
1.x10°

1.%x 10’

1.% 10°

100000.
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (15/17)

The CMS Vacuum Chamber (in Cavity Shape [nput 179/ 8 104L6%

ABCL NP 12.2 : SAMFLE INPUT #1 CMS EXFERIMENTAL CHAMBER WITH 2m TAFERING

the LHC) with ABCI code —5id design

with 2m tapering

Cavity Shape Input 11/ 9/ 8 104516

ABCL NP 122 : SSMFLE INPUT #1 CMS EXPERIMENTAL CHAMBER WITHOUT TAFERING
DpZ= 72000 mm, DDR= Z2.00¢ mm

Old design
without tapering

(1

Cavity Shape Input 1/ 98 1A%

4BCL NP 12.2 : S4MFLE INPUT #1 CMS EXFERIMENTAL CHAMBER A3 OF 10,/03/2008
DPZ= %90 mm, DDR= 200 mm
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MRDT= 0, §IG= 7.500 cm, DPDPZ= 5K mm, DPR= 5000 mm

006

Real Part of Longitudinal Impedance 1979/ 8 912359

ABCL NP 172 : SEMFLE INPUT #1 & SIMFLE CAVITY STRUCTURE
MEOT= 0, §IG= 7.500 cm, DDZ= 5.00 mm, DPR= 5.00} mm
40 . L ) ) )

a6 (1 )

a.¢

Real 7y, {k0)

2B

a0

Real Z, (k)

15

06 0.8
10 Frequency f (GHz)

Real Part of Longitudinal Impedance 1979/ 8 304704

SBCL NP 172 : SEMFLE INPUT #1 & SIMPLE CAVITY STRUCTURE
MRDT= 0, §IG= 7.500 cm, PPZ= 50K mm, DDR= 500} mm
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=> The resonance frequency of the 1st
mode is shifted as expected from
something between 450 and 500 MHz
to ~ 750 MHz (when the larger beam
pipe radius reduces from 25 cm to 16
cm)
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Example of simulated longitudinal wake potential for the case of the old design
without tapering

Wake Potentials Rty r 3 Tk
SBCL WP 12.2 : SEMFLE INPUT #1 CMS REFRRIMENTAL CHAMBER WIYHOUY TAPERING
NEDT= 0, SIG= 7.500 cm, PDZ= 20K mm, DPR= .00 mm
1-0 A A A A L A A A A L A A A A L A A A A L A A A i

i Charge Denzity
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Another convention

as the one used before
as it is < 0 just after
the source

_—
L
=
=
-
=
[
—-—
[
Ay
[V
©
==
o
=
')
o
2

0.5 0.6 0.7

Distance from Bunch Head S (m)
Longitodinal Weke i /Mar= -1 99KB-01/ 1829801 V/p¢,  Lows Pactor= —9 182808 7/pC
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