BUNCHED-BEAM TRANSVERSE
COHERENT INSTABILITIES

(Single-bunch linear) Head-Tail phase shift (10 Slides)

Viasov formalism (7)
Low intensity => Head-tail modes: (Slow) head-tail instability (43)

High intensity => Coupling of the head-tail modes: Transverse
Mode Coupling Instability (TMCI) or (Fast) head-tail instability (40)

Transverse coupled-bunch instability in time domain (11)
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HEAD-TAIL PHASE SHIFT (1/10)

Let’s have a look first to the effect of chromaticity on the transverse
bunch dynamics, as it is the key ingredient for instabilities

Equation of motion for a single particle in longitudinal phase space
(using polar coordinates) considering only the linear force and
neglecting collective effects (see previous courses)

z(s;r.¢,)=rcosg,

After a transverse kick the particle also undergoes transverse motion
which, turn after turn (n = s/ C), can be described by

y(n;r,¢s)=Asin[2any+ﬁ(n;r,¢s)]
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HEAD-TAIL PHASE SHIFT (2/10)

with, assuming a purely linear chromaticity,

This phase shift can then be expressed as a function of the actual
position of the particle in the longitudinal phase space
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HEAD-TAIL PHASE SHIFT (3/10)
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HEAD-TAIL PHASE SHIFT (4/10)

At turn n, the transverse excursion of the slice can
then be obtained by multiplying the previous relation by the actual
longitudinal distribution FJEMMAl of the bunch, integrating over
K] and normalizing the result

<y>(%;n)=A(%;n)sin[2any+ ¢y(%;n)]+B(%;n)cos[27rnQy+ (py(%;n)]

fdép(%,é;n)cos gyésin(Zans)}

[dop(t.0:m)

fdép(%,é;n)sin gyésin(ZJran)]

A

[asp(z.8:n)

Q,0

t[1-cos(27nQ,)]
Ui
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HEAD-TAIL PHASE SHIFT (5/10)

After the RF capture, the distribution p becomes independent of n
(assuming no coherent longitudinal oscillations) and is an even
function of &

If we consider the evolution of 2 longitudinal positions within a
single bunch separated in time by ATt, then the phase difference in
the transverse oscillation of these 2 slices is given by

< 0, At|1-cos(2xnQ,)|
Ui

, i.e.

1
2

This phase difference is a maximum when EIOR
after 2 a synchrotron period
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HEAD-TAIL PHASE SHIFT (6/10)

It is directly related to the chromaticity by

__nA¢;”‘aX(Ar)
2AT Q,

Furthermore, there is also information related to the decoherence of
the signal observed. Considering a Gaussian distribution, one has
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HEAD-TAIL PHASE SHIFT (7/10)

2
Q, 0.
09, o5 sin(2xnQ, )

2

=> Therefore, in the presence of non-zero chromaticity, the signal
envelope decoheres and recoheres every 2 synchrotron period

Finally, the signal revealed by a transverse Beam Position Monitor in
the control room of an accelerator is given by

Transverse excursion of a slice Longitudinal distribution
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HEAD-TAIL PHASE SHIFT (8/10)

=> See the Movie for the case of a CERN SPS bunch for the LHC
(under Windows!)
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HEAD-TAIL PHASE SHIFT (9/10)

7, =40, =2.8ns

T =308 SPS turns

€, =0.05]

Head and Tail
in phase

1st trace = turn 1
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HEAD-TAIL PHASE SHIFT (10/10)

7, =40, =2.8ns

T =308 SPS turns

€, =0.05]

~ Maximum phase
difference between
Head and Tail

turn 150
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VLASOV FORMALISM (1/7)
‘ SINGLE-PARTICLE EQUATION FORMALISM

Coupled-bunch modes Particular Head-tail modes

Courant and Sessler LUBECCULECI Pellegrini and Sands
01 Mol and oscillation
n=0,1,... M-

modes

Generic
impedances U SON ISR AL => Radial modes
=> Distribution of particles

and high order =
hea%-tail = Liouville’s theorem q=....,— 1,0,1,...

Sacherer’s integral equation
Laclare’s eigenvalue problem

Horizontal stationary distribution

Coherent motion at
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VLASOV FORMALISM (2/7)

The results discussed before for coasting beams can also be re-
derived using the Vlasov formalism

The basic mathematical tool used for the mode representation of the
beam motion is the Vlasov equation, which describes the collective
behaviour of a multiparticle system under the influence of
electromagnetic forces

It can be derived from the conservation of the phase-space area (as
stated by the Liouville’s theorem)

To construct the Viasov equation, one starts with the single-particle
equations of motion

The coordinates [ff] and (with ) should be canonically
conjugated, which means that they should be derived from a
Hamiltonian H( qdy P,y t) by the canonical equations
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VLASOV FORMALISM (3/7)

According to the Liouville’s theorem, the particles, in a non-
dissipative system of forces, move like an incompressible fluid in

phase space. The constancy of the phase space density q;( g .p t)
Is expressed by the equation p°tp>

where the total differentiation indicates that one follows the particle
while measuring the density of its immediate neighborhood. This
equation, sometimes referred to as the Liouville’s theorem, states
that the local particle density does not vary with time when following
the motion in canonical variables
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VLASOV FORMALISM (4/7)

Practically, one would like to know the development of this density
as seen by a stationary observer (like a beam monitor) which does
not follow the particle

It depends now not only directly on the time but also indirectly
through the coordinates of the moving particles, which change with
time

This expression is the Vlasov equation in its most simple form and is
nothing else but an expression for the Liouville’s conservation of
phase-space density seen by a stationary observer
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VLASOV FORMALISM (5/7)

In Liouville’s theorem the phase-space area is only conserved if
expressed in canonically conjugated variables

The same criterion applies to the validity of the Vlasov equation

However, these variables are often not very practical for accelerator
applications, and other coordinates are sometimes used in an
approximate manner

Strictly speaking, @ and are given by external forces

Collisions among discrete particles in the system, for example, are
excluded

However, if a particle interacts more strongly with the collective
fields of the other particles than with its nearest neighbours, the
Vlasov equation still applies if one treats the collective fields on the
same footing as the external fields

This in fact forms the basis of treating the collective instabilities
using the Vlasov technique
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VLASOV FORMALISM (6/7)

Vilasov equation for a system of particles subject to simple harmonic
q

=wq2+p2
2
_oH_
Jdp P
. 9) _

motions with Hamiltonian

Equations of motion

Motion of a
harmonic oscillator

Going to polar coordinates, the Vlasov equation writes

q=71CoSQ .
— —+ifg+<p—=0
p=—rsi ot or 0 ¢
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VLASOV FORMALISM (7/7)

As ris a constant of motion =>

=> depends only on r: Q'Y ( r)

Once the initial distribution of the beam is given at time t = 0, the
distribution at time t is obtained by rigidly rotating the initial
distribution in phase space angle [fiJat a constant angular speed

A stationary distribution is any function of r, or equivalently any
function of the Hamiltonian H
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HEAD-TAIL INSTABILITY (1/43)

SINGLE-PARTICLE TRANSVERSE MOTIONS

The transverse motions of a test particle in a bunch are described by
six coordinates

2 of them are related to the longitudinal phase space => The
parameters [ENCH] or [EFRM] will be used
Here, represents the time interval between the passage of the
synchronous particle and the test particle

A purely linear synchrotron oscillation around the synchronous
particle at frequency is assumed

. 9)
T.+w, T, =0

The motion in the longitudinal plane is assumed to be stable (no
coherent effect)
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HEAD-TAIL INSTABILITY (2/43)

The other 4 parameters are 2 pairs of coordinates [EfES] or

They are related to the transverse phase spaces (horizontal and
vertical respectively)

Here, and are the betatron coordinates, 2% and are the
betatron phases at time . The solution of the equation of
unperturbed motion, e.g. in the horizontal plane, is written as

X, =X, cos( qax,i)

Reminder: The horizontal betatron frequency is given by (see
Coasting beams)

Horizontal
chromatic
frequency
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HEAD-TAIL INSTABILITY (3/43)

=> In the absence of perturbation the horizontal coordinate satisfies

In the presence of electromagnetic fields induced by the beam, the
previous equation is modified to

The electromagnetic fields must be
expressed like this when following the
particle along its trajectory
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HEAD-TAIL INSTABILITY (4/43)

SINGLE-PARTICLE TRANSVERSE SIGNALS

The horizontal signal induced at a perfect pick-up electrode
(infinite bandwidth) at angular position in the ring by the off-
centered test particle is given by

Sx,i( t,ﬁ) = sz’i( t,ﬁ) xi( t) = SU.( t,ﬁ“) )Acl.cos( %,i)

where is the current signal of the particle that moves in the
external guide field (no self field added)

At time , the synchronous particle starts from and
reaches the pick-up electrode at times satisfying
k

Q,t, =0 +2km, -—osks+ow
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HEAD-TAIL INSTABILITY (5/43)

The test particle is delayed by . It goes through the electrode at
times Jl given by

0
t,=1 +T,

The current signal induced by the test particle is a series of
impulses delivered on each passage

In the time domain, consists of a series of impulses, the
amplitude of which changes at each passage through the
electrode
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HEAD-TAIL INSTABILITY (6/43)

Developing COS( fﬂx,i) into exponential functions and using the
following equation

n = —0oo

Bessel function of mth order
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HEAD-TAIL INSTABILITY (7/43)

e . (o, | n : -
0 J a)x,z I+ (pOx,z) *—m ][ ( kQO +m(1)s) t+ml}}l k”ﬂ‘]
= X, e E J" I, (k) e

m,k

41
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HEAD-TAIL INSTABILITY (8/43)

=> The single particle spectrum is a line spectrum at frequencies

(k +Qx’i) Q, +mw,

Around every betatron line (k +Qx,i) €2 , there is an infinite number

of synchrotron satellites J7Z] , the amplitude of which is given by the
Bessel function:

The important point here is that the spectrum is centered at the
chromatic frequency
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HEAD-TAIL INSTABILITY (9/43)

STATIONARY DISTRIBUTION

In the absence of perturbation, , and are constant during
the motion

Therefore, the stationary distribution is a function of the peak
amplitudes only

W5, 59,7

No correlation between horizontal, vertical and longitudinal planes is
assumed and the stationary part is thus written as the product of
three stationary distributions, one for the longitudinal phase space
and one for each transverse phase space

W, = fxO('%i)fyO( )A’z) go( %i)
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HEAD-TAIL INSTABILITY (10/43)

Since on average, the beam center of mass is on axis, e.g. the
horizontal signal as well as the horizontal dipolar magnetic field
induced by the stationary distribution are nuli

Number of particles in the bunch

5.0 =N TS S S 5.010) 7ol 2) £a(5) () £.3,7,

dx;dy, dz,dg,, ,de,,,dyp,=0
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HEAD-TAIL INSTABILITY (11/43)

PERTURBATION RECEMEFAVA

In order to get some dipolar fields, density perturbations A‘Px that
describe beam center-of-mass displacements along the bunch are
assumed

The mathematical form of the perturbations is suggested by the
single-particle signals

The kind of perturbation we are looking for is the rigid-dipolar mode.
This is the mode for which the stationary distribution is
displaced from the origin by a small amount and rotate rigidly about
the origin

Expanding this distribution to 15t order and considering a single
value of m (i.e. considering the case of low intensity coherent modes
of oscillation, in which the betatron frequency shift remains small
when compared to the incoherent synchrotron frequency ), one
then has for the amplitudes of the perturbations
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HEAD-TAIL INSTABILITY (12/43)

where )%m(fi) is the coherent (average) horizontal peak betatron
amplitude associated with a given synchrotron orbit . Furthermore,
because of the integral over : and , the transverse
signals induced would be null unless one introduces the complex

conjugates of ef(cm,,-+ a8 in the perturbation term => The betatron

phases and synchrotron phase are chosen in order to satisfy

Coherent (angular) betatron
frequency to be determined
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HEAD-TAIL INSTABILITY (13/43)

In the time domain, the horizontal signal takes the form (for a single
value m)

Sx(t,ﬁ)=e4g3T0Nbfffffffcizj‘mjm,x(k% x

he(3,.9,8,) e /i) 3 5 5 dy, dy, dt, dg,, , dg,, , d,

In the frequency domain, it becomes
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HEAD-TAIL INSTABILITY (14/43)

In comparison with the rich spectrum of the test particle, a single
synchrotron satellite remains

The perturbation is coherent with respect to the satellite number m

By means of the perturbation, the transverse initial conditions of the

particles in the bunch have been arranged. The result of this
perturbation is that the position of the center of mass changes along
the bunch. The horizontal phase space distribution rotates not at

incoherent frequency exactly but at frequency :
due to the perturbations (wake fields) and the frequency spread
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HEAD-TAIL INSTABILITY (15/43)

TRANSVERSE COUPLING IMPEDANCE

The coupling impedance , Which gather all the characteristics of
the electromagnetic response of a machine to a passing particle,
allow us to express the transverse fields in terms of transverse
signals
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HEAD-TAIL INSTABILITY (16/43)

EQUATION OF COHERENT MOTION
oW J¥ 1 oW
at  9x, - 0@y, ;

Dropping the 2"d order terms with respect to the perturbations,
yields

The expression of can be drawn from the single-particle
horizontal equation of motion
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HEAD-TAIL INSTABILITY (17/43)

Here, has been approximated by andm G(j/2) 7"

since the other component can be ignored if the frequency shift is
small compared to the betatron frequency

This leads to
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HEAD-TAIL INSTABILITY (18/43)

JOxi  —-jpRT;

Multiplying both sides by K € , Where p is an integer,
developing it in Bessel functions (as seen before) and retaining
only one value m, one obtains
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HEAD-TAIL INSTABILITY (19/43)

Using the definition of multiplying both sides by ,
integrating over and values and using
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HEAD-TAIL INSTABILITY (20/43)

_27172 dfxOS';Ci) X
dx .
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HEAD-TAIL INSTABILITY (21/43)

In the absence of frequency spread, the previous equation can be
written as an eigensystem

where is the identity matrix, K ] is the matrix whose
elements are given by ka
X,m
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HEAD-TAIL INSTABILITY (22/43)

The procedure to obtain first order exact solutions, with realistic
modes and a general interaction, thus consists of finding the
eigenvalues and eigenvectors of the infinite complex matrix K

The result is an infinite number of modes X7 () of
oscillation. To each mode, one can associate a coherent frequency

shift [(CRICNE mws)q (gth eigenvalue of the matrix), a coherent

spectrum (gth eigenvector of the matrix) and a coherent

peak betatron amplltude distribution

mq

For numerical reasons, the matrix needs to be truncated, and thus
only a finite frequency domain is explored

Low order eigenvalues and eigenvectors of the matrix i can be
found quickly by computation, using the relations
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HEAD-TAIL INSTABILITY (23/43)

() =4/( m,f)

The horizontal coherent oscillations (over several turns) of a “water-
bag” bunch interacting with a constant inductive impedance are
shown in the next slides for the first head-tail modes (solving the
eigensystem)

It is found that the spectrum of mode fIf] is peaked near [ISIFIFRERZ
and extends over (radians/second). The largest eigenvalue

takes the subscript|[Zigld . Usually, only diagonal modes
are referred to (Y dipolar mode, quadrupolar mode,...)
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HEAD-TAIL INSTABILITY (24/43)

000 002
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HEAD-TAIL INSTABILITY (25/43)

013 022 024 033
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HEAD-TAIL INSTABILITY (26/43)

Finding the eigenvalues and eigenvectors of a complex matrix by
computer can be difficult in some cases, and a simple approximate

formula for the eigenvalues (which will be simply written m in

the following) is useful in practice to have a rough estimate

Multiplying both sides of

(without frequency spread) by EM§3

values, yields
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HEAD-TAIL INSTABILITY (27/43)

Let’s now show that

-2 «—2m fi=rb /2 f;=1’—b /2] w=+x

of_,m(a)+ W, + ma)s) do="" f f f w

2,=0  2/=0 | w=-o

A

X'xm( %i) go( %i) T, dT, Am( %1’) go( %1,) T,
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HEAD-TAIL INSTABILITY (28/43)

one obtains

W=+

1 f\w\az W+ w. + mow )dow
o) X,m &g, S
W=—®

W=+
-2 «=2m

%f\a)\cf,m(a)+w§x+ma)s)da)=n j

a)=—OO
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HEAD-TAIL INSTABILITY (29/43)

Sampling the function o|o;, n(w T W, + mws) at frequencies

k=+

2
[|a) xm(w+w§_+mws)] =Q, E|a) Gx,m(a)+a)§_+mws)x
X sampled .

k=—OO

6[ a)—(k+Qx0)QO+a)§x]

2
[\w\am(w+ W, +ma)s)] dw
o ox sampled

[(k+Q )Qo+ma)s]
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HEAD-TAIL INSTABILITY (30/43)

Using the approximation

W=+
dw = f | Gﬁm(a)+ W, + ma)s) dw

W=—00

2
ax’m(a)+ w: + ma)s)]

sampled

Assuming a “water-bag bunch”
g(t) = 4/( Jm,f)
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HEAD-TAIL INSTABILITY (31/43)

Furthermore, the mode m is peaked near the frequency (|m |+ 1) /T,

and the approximation [LEXASISIEION z(\m\+1) wI4M can be used,
which yields

Full bunch length (in meters)

Effective impedance
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HEAD-TAIL INSTABILITY (32/43)

The spectrum Gx’m( k) depends on the interaction Zx( w,’j) . However,

for a non exact but realistic set of modes, the previous equation
with Gx,m( k) given by the previous figure, can be used to find
approximate eigenvalues for any

A good (proportional) fitting of the power spectrum ‘()' (k)‘2 of

x,m

the previous figure is obtained by the following function

The power spectrum of mode [B is peaked near CRA(EIERIELLS
and extends (radians/second) as the discrete spectrum

found numerically in the figure
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HEAD-TAIL INSTABILITY (33/43)

Using the fitting function, Sacherer’s formula for the transverse
coherent frequency shifts of bunched beam modes is obtained

k=+
E Zx( a),f) hm’m( w, — a)gx)

X - . [))I k=—-o00
Aw’ =(wc—a)x0—mws)=(‘m‘+l) 1 JP —
, 2myy Q0,02 L,
h, (o, -
k=z_oo ’ ( ‘ §X)

for M equi-spaced equi-populated bunches

Coupled-bunch
Phase shift between 2 ) M mode number
successive bunches <7,
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HEAD-TAIL INSTABILITY (34/43)

2

The function [SMESEI?N] is given by hm,m( w —Cng) = ‘ Pm( w ‘a)sx.)

where is the Fourier transform of the signal
Here corresponds to sinusoidal modes given by

cos[(|m|+l) nt/tb], m even
sin[(|m|+1) nt/rb], m odd

The difference signal from a beam position monitor has thus the

form
Xy 11T, +27kQy)

A —signal « p, (1) e/t
For the kth revolution
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HEAD-TAIL INSTABILITY (35/43)

where (radians) is the total phase shift between head
and tail

The frequency of the wiggles along the bunch is determined by the
horizontal chromatic frequency

The number of nodes on separate superimposed revolutions gives
the modulus of the head-tail mode number

Power spectrum Pick-up (Beam Position Monitor) signal

One particular turn
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HEAD-TAIL INSTABILITY (36/43)
Example of slow Head-Tail single-bunch instability in the CERN PS

Measurements Stabilisation by linear

coupling only (i.e. with neither
octupoles nor feedbacks)

-
o

0.00008-

0.0000%4

0.00006-

0.0000%

INTENSITY [10"2 ppp]
p [GeVic]

150 650 1150 1650 2150
TIME IN THE CYCLE [ms]

INTENSITY [10" ppp]
(&) ]
p [GeVic]

650 1150
TIME IN THE CYCLE [ms] .I Time (20 nSIdiV)
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HEAD-TAIL INSTABILITY (37/43)

Figure 4: Measured AR signals from a radial beam-position monitor during 20 consecutive turns, in the PS
with minimum coupling [5]: (a) &, =-0.5, (b) &, =-0.7, (¢c) &, =-1.1. (d) & =-12, (e) &, ~—1.3.
Time scale: 20 ns/div.
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HEAD-TAIL INSTABILITY (38/43)
Theoretical predictions

Bunch spectrum

10 20

Chromatic frequency « ¢

Real part of the

RW impedance Here one also clearly
sees that the chromatic frequenc
has to be > 0 to avoid the most

critical mode 0
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HEAD-TAIL INSTABILITY (39/43)

The results obtained with linear coupling between the transverse
planes for coasting beams can also be extended to the case of
bunched beams, using “equivalent dispersion relation coefficients”,

The beneficial effect of linear coupling has been checked with the

HEADTAIL code assuming a round chamber (same impedance and
betatron function in both planes) and only a different chromaticity
in both planes (in the absence of frequency spread and SC etc.), to
reveal the sharing of the instability growth rates (i.e. in fact of the
chromaticities)
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HEAD-TAIL INSTABILITY (40/43)
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Courtesy of B. Salvant
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HEAD-TAIL INSTABILITY (42/43)
Finally, Sacherer’s formula is also used to have: (1) an “estimate” of

the imaginary part of the (effective) coupling impedance by
measuring the coherent tune shift vs. intensity. However, one has to
be careful here, remembering that in asymmetric structures, the
quadrupolar term is also important

Vertical coherent tune shift with intensity at 26 GeV, scaled to 0.5 ns C E RN S PS at | n j e Ctl on

Year, Im Z | with fit uncertainty
2000 : 32.2 +/-0.5 MQ/m
2001 : 19.1 +/- 0.2 MQ/m
2003 : 22.2 +/- 0.4 MQ/m
2006 : 23.6 +/- 0.3 MQ/m
2007 : 22.0 +/- 0.2 MCQ/m

72}
=
\
)
—
+—
)3
-
<

10'? protons per bunch

Same analysis and very similar beam parameters (~ 0.5 - 0.6 ns rms bunch length) Courtesy of H. Burkhardt

The measured slopes can directly be compared. Estimated uncertainty ~ 10 - 20 %.
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HEAD-TAIL INSTABILITY (43/43)

(2) an “estimate” of

[a—
n

the (effective) real
part of the coupling

[a—
o

impedance by

Ztrans in MOhm/m

measuring the
head-tail growth/
decay rates vs.
chromaticity

CERN SPS at injection

From all the
(20) kickers in
2006

O

Courtesy of H. Burkhardt
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TMCI (1/40)

If the intensity is too high, the different head-tail modes (which are
standing-wave patterns) cannot be treated independently

Reminder: For 0 chromaticity, there is no Head-Tail instability

However, even for 0 chromaticity, above a certain intensity

threshold (called the Transverse Mode Coupling Instability

threshold), 2 modes can couple leading to the Transverse Mode-
Coupling Instability. In this case a traveling-wave pattern is
propagating along the bunch
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TMCI (2/40)

Following the same formalism as before, the starting point is a
formula we derived before

—w,-mo, X, (%),

]€J'L'I Ez(wk) m

2moc YO.o
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TMCI (3/40)

and integrating, yields

The previous low-intensity coherent modes of oscillation are
recovered when only 1 value of m is considered

For the general case (i.e. considering all the modes m), one
method consists in dividing the previous equation by

and integrating over m
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TMCI (4/40)

Using the matrix notation, it can be written
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TMCI (5/40)

Method to solve this equation

Assume a real coherent betatron frequency shift measured in
incoherent synchrotron frequency unit

w

N

Look for the eigenvalues of the matrix

[ij(w,f)] [Mpk]

Scale the intensity parameter in order to adjust the

eigenvalue to unity

Examples are given in the next slides
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TMCI (6/40)

1) Constant inductive impedance
We — Wy
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@ TMCI (7/40)

2) Very short bunch interacting with a Broad-Band impedance

Mode coupling => Above
this intensity threshold, the
betatron frequency will acquire an
imaginary part => The beam is
unstable
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TMCI (8/40)

3) Short bunch interacting with a Broad-Band impedance
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@ TMCI (9/40)

4) Long bunch interacting with a Broad-Band impedance

Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 70/112



TMCI (10/40)

Using the (approximate) sinusoidal modes discussed before

cos[(‘mhl) nt/tb], m even

pm(t)= Sin[(‘m‘+1)ﬂ,’t/‘5b], m odd

and generalizing the bunch spectrum to any mode (m,n)
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TMCI (11/40)

2
%( ‘m‘+1)x( ‘n‘+1)an’f

<{ (07, /7)" - \m\+1)2}‘1x{ (w7,/7)" - ( |n[+1)"}

-1

_ (‘m‘+‘n‘+3)/2
L X sin[a)rb]

Fow =(—1)( mlrinle2) sin’| wt, /2 |
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TMCI (12/40)

The generalized Sacherer’s formula for any mode (m,n) is then
written

jepl,
2myy Q.82 L,
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TMCI (13/40)

Considering the case where 2 adjacent head-tail modes (m and m
+1) undergo a coupled motion, the stability of a high-intensity
single-bunch beam can be discussed using the following

determinant, e.g. in the vertical plane

\7
m.m

Remarks concerning hm,mﬂ ( 00) : One can see that

It is a pure imaginary function

with JEESEXONESION +Aw

It is an odd function
h’m,m+1( (1)) = _hm+1,m( (1))

Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 74/112




TMCI (14/40)

_ y _ _ 12 y
=> A(Um+1,m _ km Aa)m,m+1

Considering the case of a driving broad-band resonator, the
coupling impedance is given by

x[2a)y0+(2m+1) W, +Aw’),  +Aw’ ]

m+1,m+1

W) 4k (Aw),)
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TMCI (15/40)
Writing Aa);m =a, Ib

Aw’ =D, I,

m+1,m+1

Aw’

m.m+1

=c, 1,

b o > ] | then ;, m > 1, il - The beam is stable from zero
|ntenS|ty to S Then it is unstable between and
(mode-coupling at Ib il )- Finally, it is stable again above

(mode-decoupling at ). This case is depicted in the next figure
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TMCI (16/40)
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TMCI (17/40)

This corresponds to the case of a “long bunch” (with respect to the
impedance: [FESAUSIEA=> See next slide), whose spectra of modes
0 and -1 peak at low frequencies. Both modes couple to the
inductive part of the coupling impedance, and therefore are shifted
in the same direction. Moreover, their coupling to the resistive part
of the coupling impedance is weak. As a consequence, when the
two modes merge, they cannot develop a strong instability and are

pulled apart as intensity increases. Modes of higher order can

couple, but higher-order modes are more difficult to drive than
lower-order ones and therefore the intensity threshold is expected
to be higher
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TMCI (19/40)

Je,
K Xm(z,)

h -1,0
A, June 22-26, 2009 80/112



Transverse wake-field

TMCI (20/40) ,5

Nb,th

—————» Time

%

%

2fr Tb
0.5 1 1.5 2
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TMCI (21/40)

In the following, one will consider for our model the mode-coupling

between the two most critical head-tail modes (m and m+1)
overlapping the peak of the negative resistive impedance. In this
case there will never be mode-decoupling ( ), and the
threshold for mode-coupling is obtained at the intensity

Re [(a) 0, o, ] tmo? |

A
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TMCI (22/40)

Below the intensity threshold, the real and imaginary parts of the
coherent frequencies are given by

Above the intensity threshold, the real and imaginary parts of the
coherent frequencies are given by
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TMCI (23/40)

The instability rise-times are given by

which gives, for the unstable mode

~ 1 for long bunches

Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 84/112




TMCI (24/40)

The intensity threshold can be found from the previous equation
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TMCI (25/40)

This leads to

~ Same result as
for coasting beams!
(within a factor ~ 2)
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TMCI (26/40)

L,

Furthermore, when o = >> 1 , and in the case of a long
I/
bunch b.thl

1
Nb,th X —

As Il => The instability rise-time becomes independent

of synchrotron motion as could be anticipated (as the instability
rise-time is much faster than synchrotron period)
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TMCI (27/40)
¢ This can be checked with the MOSES code, which is a program

computing the coherent bunched-beam mode

+ Below is a comparison between MOSES code and the HEADTAIL
code, which is a code simulating single-bunch phenomena, in the
case of a LHC-type single bunch at SPS injection

& HEADTAIL
MOSES

X A O O 7/

-- - "‘-

Courtesy of B. Salvant

Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 88/112




- Imaginary Part of (v-vy)/vg -

MOSES -- MODE COUPLING INSTABILITY IN SPS AT 26 GEV

BB resonator impedance
R, =10 MQ/m

- Imaginary Part of (v-vy)/vg -

MOSES -- MODE COUPLING INSTABILITY IN SPS AT 26 GEV

MOSES
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TMCI (29/40)

¢ General picture (for 0 chromaticity)

- Imaginary Part of (v-vy)/vg -
MOSES -- MODE COUPLING INSTABILITY IN SPS AT 26 GEV

27/11408 11.55.34 VERSION 3.3 CPU TIME USED: 0.534-314 (s)
20 T

Nonlinear E E / NUS =0.:’%24E»03

ENGY = 26.0 (GeV)

] i SGMZ = 21.0 (cm)
Linear | serace w00
REVFRQ= 0.433E-01 (MHz)
AT PHA = 0.192E-02
CHORM = 0.000E+00
FREQ =0.100E+04 (MHz)
RS =100 (MOhm/m)
QV = 1.00

IBIN = F

MU =5

Imag (v-vg)/vg

Infinite rise-time
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TMCI (30/40)

¢ PS measurements near transition

2, AR, AV signals gy ——
) fk ﬁ ﬂ' ﬂf |
L ! P ! ! _ f! I ’I i 1?‘ _e — n—
A / ~|“\J “ Y il S
Time (10 ns/div) _

Instability suppressed by increasing the longitudinal emittance

Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009 91/112



TMCI (31/40)

SPS measurements at injection => See also the Movie for the case
of a CERN SPS LHC-type bunch (under Windows!)

p=26GeV/cfIN, =1.210" p/b
Synchrotron period = 7 ms

g,~02eVs<eg " =0.35eVs

. bet
r i
v | ‘:‘ LWL W Peak
] Mg n S

—
Illll

relative intensity
relative intensity

0.8 O = ‘: 'il
-
0.6 bet 0.6 F
B J.0 P apw
) I Instability suppressed
Peak L = =
i by increasing
0.4 04 T the chromaticity
-
0.2 02 H § =0.8
s P
0 llllllll llIlllllllllllllllllllllllllllllllllllll 0 |||||||||||||||1|||||||||||||||||||||||||||||||||
0O S 10 15 20 25 30 35 40 45 ‘ 0 S5 10 15 20 25 30 35 40 45
time 1n ms time 1n ms

T SPS

rey

~23 us
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TMCI (32/40)

=> Travelling-wave pattern along the bunch

Time [ X 0.125 ns]

1st trace (in red) = turn 2 || Last trace = turn 150 || Every turn shown
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TMCI (33/40)
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TMCI (34/40)

Effect of linear coupling between the transverse planes in the case
of an asymmetric (flat) chamber

=> Using the same formalism as before, i.e. considering the case
where 2 adjacent head-tail modes (m and m+1) undergo a coupled

motion, the new system to solve is Same notation
as when it was discus-

(near ) sed with coasting

beams
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TMCI (35/40)

. _ X _ Yy
with [ONERONSE /o) +Aa)m,m w,,, =0+ [Q,+mw, +Aa)m’m

This leads to a 4t order equation, which can be written
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TMCI (36/40)

This equation can be solved on the resonance (using here the

approximation )

y
+ Aa)m+1,m +1 )

+Aw’

m+1,m+1

+Aw’

m,m+1

Aw’

m,m+1 m+1,m+1

l‘20() +Aw’
2

If the previous equation is fulfilled, then it is possible to stabilise the
beam by linear coupling. Beam stability is obtained above a certain
threshold for the coupling strength, whose value is given by
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TMCI (37/40)

Consider for instance the case where , and

The necessary condition for stability becomes

‘Aa)y

m,m+1

1
<—|w +Aw’ ~Aw’
2 ) m.,m

m+1,m+1
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TMCI (38/40)

This is the one-dimensional vertical stability criterion with the angular
synchrotron frequency replaced by

, 2A
W, =wm, X
A+1

If => A factor 2 can be gained on the TMCI intensity threshold

If WA => A factor 4/3 (i.e. 33%) can be gained on the TMCI intensity
threshold
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TMCI (39/40)

The last case was checked with the HEADTAIL code and a good
agreement was found

AUCCUCTUI V" = N ~2.8x10" p/bR® y-Yokoya factor

Ry =20 MQ/m

r '
N =33x10" p/b H%H

Flat chamber <

.

x-Yokoya factor
=> The intensity threshold is increased in a flat chamber by

- The vertical Yokoya factor in the y-plane

- Slightly more than the horizontal Yokoya factor in the x-plane (it
is not suppressed! and the effect of the detuning impedance, if any,
seems small and in the plane of higher threshold)
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TMCI (40/40)

WITHOUT LINEAR COUPLING WITH LINEAR COUPLING

il il
’* ﬂ\m | “

15 20

0. =26.180 0, =26.185¢,, =0 KHEADTAIL _ 0 05 -1

=> The vertical intensity threshold is increased from ~ 3.3E10 p/b
to ~ 4.5E10 p/b , i.e. an increase of 36%, in good agreement with
a previous theoretical prediction of 33%
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3
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Transverse coupled-bunch instability in time domain (1/11)

The transverse coupled-bunch instability in circular machines is
usually discussed using Sacherer’s formula in the frequency domain

Due to the periodicity of the machine, it can be derived for any wake-
field in the case of equi-populated and equi-spaced bunches

This formula takes into account the wake-field from all the preceding
bunches and from all the previous turns. Furthermore, the intra-
bunch motion is also taken into account. This approach is certainly
still valid when the bunch train is much longer than the gap and for

long-range wakes. However, when the gap is much larger than the
train only a rough estimate can be expected

In this case it is better to make a time-domain analysis, which is done
in the following

2 formulae will be proposed, the first for the case of the resistive-wall
impedance with (or without) inductive bypass (i.e. taking into
account the 1st low-frequency regime, which is of great importance
for instance for the LHC collimators), and the second for the case of
a resonator impedance
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Transverse coupled-bunch instability in time domain (2/11)

In the case of the resistive-wall impedance, the equation of motion
for the bunch [l (at azimuthal coordinate [ ) submitted to the force
exerted by the preceding bunch (at azimuthal position )
is given by, assuming first only the 2"d frequency regime (i.e. the
classical thick wall regime, and considering macroparticle bunches

It is not defined
with a — here! Bunch spacing
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Transverse coupled-bunch instability in time domain (3/11)

In the presence of inductive bypass, an approximate formula for the
wake field is given by (A. Koschik, 2003)
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Transverse coupled-bunch instability in time domain (4/11)

Summing over all the bunches and all the previous revolutions
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Transverse coupled-bunch instability in time domain (5/11)

Here, = transverse position of bunch

x(y)=1 if y=0 , 0 otherwise

T = ( [-k )Sbunch WA = distance between bunch [l and

This leads to an eigenvalue problem, which can then be solved
numerically: from the imaginary part of the eigenvalues the
instability rise-time can be computed
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Transverse coupled-bunch instability in time domain (6/11)

R2
0-0,+ e
’ 2 QxO mE=1

i, e [I—Erf(m)]}

=0

—k,y e“n [I—Erf(m)]]
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Transverse coupled-bunch instability in time domain (7/11)

In the case of a resonator impedance, the equation of motion for the
bunch [l (at azimuthal coordinate[J ) submitted to the force exerted
by the preceding bunch (at azimuthal position) is given by
(considering macroparticle bunches)

x- (dipolar)Yokoya
factor
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Transverse coupled-bunch instability in time domain (8/11)

Summing over all the bunches and all the previous revolutions yields
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Transverse coupled-bunch instability in time domain (9/11)

This leads to an eigenvalue problem, which can then be solved
numerically: from the imaginary part of the eigenvalues the
instability rise-time can be computed

R2 = : % o2aRm . )
0-0.,+—k, Ee”"z”Q e © sin| —&- 2w Rm
2 QxO m=1 ¢

o~ 2, -2 @)
$km $km .
x(1-k-1) Ee R e c sm[TRzkm
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Transverse coupled-bunch instability in time domain (10/11)

General picture in the case of equi-populated equi-spaced bunches

Bunch treated as a
Macro-Particle

%Amplitude

= M = 8 bunches =

: 8 modes n (0 to 7)
Amplitude possible

Y

9aR

S R S RSN S S —

" Phase shift between adjacent bunches

1~ for the different coupled-bunch modes ) )
p Reminder: 2 possible

Ap=2an/ M modes with 2 bunches
(in phase or out of
phase)

F. Sacherer
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Transverse coupled-bunch instability in time domain (11/11)

=> See the Movie for the case of a CERN SPS batch of 72 bunches
(under Windows!)
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