LHC Ionization Profile Monitor (IPM) Impedance measurements

F.Roncarolo, F.Caspers, J.Koopman

Introduction/Motivations

- The lonization Profile Monitor (IPM) profits of the electrons released by the residual gas ionization for imaging the beam transverse profile
- Two IPM monitors are presently installed in the SPS ring
- The tank hosting the monitor setup
 - Contains high voltage electrodes, MCP plate(s), a phosphor

- Represents a possible source of impedance due to its geometry and to the components materials
- Four monitors will be installed in the LHC ring and are foreseen to have the same mechanical design as the SPS ones

July 15th,2005

Some pictures

July 15th,2005

F.Roncarolo

Some worries

From F.Zimmermann APC presentation 26-05-05 about evaluation of the source of impedance around the SPS ring:

SPS regions 119 (near MKP kickers), ~301-307 (arc, rf?), 417-421 (near MKE kickers), and 507 (arc?) identified at both beam energies as locations with high impedance.

Location of one of the two IPMs is

517

Laboratory Measurements

- The classical stretched wire technique has been used to
 - Investigate the properties of the IPM tank
 - → See if RF power is stored in the tank
 - Verify possible cures with the degrees of freedom allowed by the present design
 - For the moment we tried to see what happens when loading the available eight connectors designed to give the input to and get the output from the various monitors components
 - Loads are 50 Ohm resistors, which well reproduce the signal attenuation/filtering of the long cables connected when the monitor is installed in the tunnel

→ See if the stored RF power can be absorbed by the cables + possible additional loads

I will present results from two different setups employing a vector network analyzer

Setup 1

- Connection of the two ports at the stretched wire extremities and observe the magnitude transmission signal (S21) as function of frequency
 - With all the connectors open (reference signal)
 - With individual connectors loaded with 50 Ohm
 - With all the connectors loaded

Results Setup 1

- Negative peaks:
- Power absorbed in the cavity
- Reference signal = no cable connected
- Connecting the MO cable
 - Dumps the mode at about 140 MHz
 - Leaves unchanged the mode at 220 MHz

July 15th,2005

Results Setup 1

Connecting all the cables surely improves the situations

N.B. : the two connectors labeled
NC (MO) and NC (PH) are left
open during operation (spare)
→ loading them with 50 Ohm

charge helps

F.Roncarolo

Setup 2

- Connections:
 - Port 1 \rightarrow one wire extremity
 - Port 2 → on the different connectors
 - » With all the other connectors open
 - » With all the other connectors loaded
 - Second wire extremity matched to 50 Ohm

July 15th,2005

Results Setup 2

Conclusions

- IPM tank may well explain impedance observations in the SPS and 4 of them will be installed in the LHC
- Loading spare connectors helps, but no quantitative calculations have been performed yet
- The monitor is installed inside a dipole magnet and insertion of ferrite absorbers is problematic
- Possible modifications of the monitor (in order to minimize the effects on the LHC impedance budget) are under investigation (Fritz Caspers) and have to be discussed with BDI experts