Measurement of the SPS low frequency longitudinal impedance: second attempt 12 December 2007

Results of MD on 1.11.2007 and their comparison with measurements done on 20.07.2007 and in 2006

Part I: measurements based on PD signal

Part II: measurements based on MR data \rightarrow Thomas

MD participants: T. Bohl, H. Damerau, T. Linnecar, M. Schokker, E. Shaposhnikova and J. Tuckmantel

Acknowledgments: G. Arduini, E. Metral and OP shift

History and motivation

Low frequency longitudinal inductive effective impedance

• Reduction in impedance, expected in 2007 due to removal of one MKE kicker and partial shielding of another one, was not observed during MD on $20.07.2007 \rightarrow$ second attempt on 1.11.2007

Estimation of impedance from quadrupole frequency shift:

 $\omega_2(N) = \Delta\omega_{inc}(N) + \Delta\omega_{coh}(N) + 2\omega_s^{(0)}$

$$\omega_2(\tau, N) = 2\omega_{s0} \{ 1 - \frac{(\omega_{rf}\tau)^2}{64} + \frac{Ne\omega_0}{4\pi hV_0} Z_1 + (\frac{2}{\pi})^{1/2} \frac{16Ne\omega_0 h^2}{V_0(\omega_{rf}\tau)^3} [(\frac{\mathrm{Im}Z}{n})_0 - \frac{3}{16\sqrt{2}} (\frac{\mathrm{Im}Z}{n})_{eff}^{m=2}] \},$$

where
$$(\omega_p = p\omega_0)$$

 $Z_1 \simeq \sum_{p=-\infty}^{\infty} p \, \mathrm{Im} Z(\omega_p) e^{-\omega_p^2 \sigma^2/2},$

and

$$\operatorname{Im}(Z/\omega)_{eff}^{m} = \frac{\sum_{p=-\infty}^{\infty} h_m(\omega_p) Z(\omega_p)/\omega_p}{\sum_{p=-\infty}^{\infty} h_m(\omega_p)},$$

The spectral density for a Gaussian bunch: $h_m(\omega) = (\omega \sigma)^{2m} e^{-\omega^2 \sigma^2}$

 Complicated dependence on bunch length ⇒ the same experimental conditions are essential for comparison

Experimental conditions

Requirements: single bunch with variable intensity and constant longitudinal parameters

- 26 GeV/c, mismatched capture in 900 kV at 200 MHz
- measurements of quadrupole oscillation frequency from
 (I) bunch profiles (Thomas)
 - \rightarrow peak amplitude oscillations
 - \rightarrow bunch length
 - + intensity measurement from BCT and calibrated peak amplitude
 - (II) peak detected signal
 - \rightarrow peak amplitude oscillations
 - + intensity measurement from BCT
 - + simultaneous bunch length measurement

(II) Bunch length (4σ Gaussian fit) as a function of intensity (measured in the PS)

- 2006: $\tau_{av} = 3.1$ ns and $\varepsilon \sim 0.2$ eVs (long. shaving in PS from 0.3 eVs)
- 20.07.2007: $\tau_{av} = 3.0$ ns and $\varepsilon \sim 0.1$ eVs long. shaving in PS (V dip)
- 1.11.2007: with long. shaving in PS: $\varepsilon \sim 0.1$ eVs, no shaving: $\varepsilon \sim 0.2$ eVs; with 1x80 MHz cavity long bunches and 2x80 MHz short \rightarrow 4 data sets

$2Q_s$ and bunch length as a function of intensity on 1.11.2007: Set (11): small emittance (shaving) and long bunches (1x80 MHz)

 $\Rightarrow \tau = 3.04 \pm 0.26$ ns and $b = -4.0 \pm 0.2$ - close to 2007

$2Q_s$ and bunch length as a function of intensity on 1.11.2007 Set (12): small emittance (shaving) and short bunches (2x80 MHz)

 $\Rightarrow \tau = 2.13 \pm 0.14$ ns and $b = -3.4 \pm 0.18$

 $2Q_s$ and bunch length as a function of intensity on 1.11.2007 Set (21): large emittance (no shaving) and long bunches (1x80 MHz)

 $\Rightarrow \tau = 4.03 \pm 0.21$ ns and $b = -3.4 \pm 0.15$

$2Q_s$ and bunch length as a function of intensity on 1.11.2007 Set (22): large emittance (no shaving) and short bunches (2x80 MHz)

 $\Rightarrow \tau = 2.8 \pm 0.2$ ns and $b = -2.8 \pm 0.1$ - most close to 2006 (bunch length and emittance), but large negative (!) slope and scatter

ε_L and τ measured in the PS as a function of intensity

- \Rightarrow Longitudinal emittance in the PS is decreasing with intensity why?
- \Rightarrow Shaving reduces the slope but increases the scatter

(II) Measurements of quadrupole frequency shift
 PD signal - FFT with dynamic signal analyzer
 (measurements start 1 s after injection, acquisition time 400 ms)

a = 310 Hz, $b = -3.9 \pm 0.07$ Hz

(II) Measurements of quadrupole frequency shift

PD signal: first 5-10 oscillations on the scope

Measurements in 2006 and 2007

MD	ε	n_{cav}	$ au_{av}$	b from		
date	[eVs]	in PS	[ns]	MR inj.	PD inj.	PD 1 s
27.10.06	0.2-0.3	2	3.1?	3.0	2.9	3.0
17.11.06	0.25	2	3.1	3.0	3.0	3.0
20.07.07	0.08-0.18	1&2	3.0	4.5	4.4	3.8

MD on 1.11.2007

data	ε	n_{cav}	bunch length [ns]		b from PD at	
set	[eVs]	in PS	$ au_{av} \pm D au$	slope	inj. (scope)	1 s (FFT)
S11	0.1	1	3.04 ± 0.26	0.00	4.0 ± 0.2	3.5 ± 0.3
S12	0.1	2	2.13 ± 0.14	0.01	3.4 ± 0.2	3.5 ± 0.1
S21	0.19	1	4.03 ± 0.21	- 0.03	3.4 ± 0.2	2.3 ± 0.2
S22	0.19	2	2.8 ± 0.12	- 0.04	2.8 ± 0.1	2.1 ± 0.2

ε_L measured in the PS as a function of intensity MD on 20.07.2007

• With shaving in the PS by voltage dip

Dependence of quadrupole frequency on bunch length

(I) - bunch profile (II) - PD signal MD 20.07.2007 310 305 V=900 kV . . (10-1.2).100 0 0 0 0 300 o [Hz] 295 Zuedneucy (1.9-3.0):1000 ບ 290 (4.9-5.8). 1010 Quadr. п 285 (0.3-6.7).100 280 260 E 2.4 3.1 3 2.5 2.6 2.7 2.8 2.9 2.6 2.8 3.2 3.4 3 3.6 Initial Bunch Length [ns] Bunch length 4σ (ns)

 \Rightarrow No significant dependence of quadrupole frequency on bunch length for fixed intensity (and emittance?)

Summary of $2Q_s$ measurements at the last MD (1.11.2007)

data	ε	n_{cav}	$ au_{av} \pm D au$	b at		
set	[eVs]	in PS	[ns]	inj. (scope)	inj (MR)	1 s (FFT)
S11	0.1	1	3.04 ± 0.26	4.0 ± 0.2	4.1 ± 0.1	3.5 ± 0.3
S12	0.1	2	2.13 ± 0.14	3.4 ± 0.2	3.4 ± 0.2	3.5 ± 0.1
S21	0.19	1	4.03 ± 0.21	3.4 ± 0.2	3.1 ± 0.1	2.3 ± 0.2
S22	0.19	2	2.8 ± 0.12	2.8 ± 0.2	2.2 ± 0.3	2.1 ± 0.2

\Rightarrow Results of measurements (b) depend

- at injection on bunch length and emittance
- at 1 s on emittance

Conclusions

- Results of measurements are sensitive to both bunch length and emittance
- Single bunch production changed from 2003:
 - PSB: $h = 2 \rightarrow h = 1$
 - PS: additional longitudinal scraping needed to reduce ε_L (to see quadrupole oscillations with 900 kV in the SPS)
- Beam recently used for quadrupole frequency measurements did not satisfy requirements of constant ε_L and τ
- Measurements in 2006 and on 20.07.2007 were done with different ε_L
- Accurate comparison with 2006 and 2001 could be done in 2008 with corresponding ε_L and τ . Requires careful production and monitoring.