20 + 10 min talk (28 slides)

Elias Métral

Work in collaboration with G. Arduini, T. Bohl, H. Burkhardt, F. Caspers, T. Kroyer, H. Medina, G. Rumolo, B. Salvant, E. Shapochnikova, B. Spataro...

Elias Métral, CARE-HHH-APD BEAM'07, CERN, 05/10/07

OUTLINE

Introduction

- Longitudinal microwave instability observed before 2001
- MKE kickers installed for extraction towards LHC (2003&6)
- Fast vertical single-bunch instability at injection in 2003 (02)
- Beam-induced heating from MKE kicker
- Resistive-wall impedance of the MKE kickers

Measurements vs. theory

- Im[Z_{y,eff}] from coherent tune shift vs. intensity
- Fast vertical single-bunch instability intensity threshold at injection
- Re[Z_{y,eff}] from head-tail growth/decay rate
- Im[Z_I/n_{eff}] from quadrupole oscillation frequency shift vs. intensity
- Power loss
- HEADTAIL simulations in the longitudinal plane
- Conclusion
- Appendices: Potential-well bunch lengthening, microwave instability with RF OFF, localization of impedances, BPMs, vacuum ports, RF cavities...

LONGITUDINAL MICROWAVE INSTABILITY OBSERVED BEFORE 2001

Figure 17.13: The bunch length measured 600 ms after injection as a function of bunch intensity in 1999 and 2001. Data taken at 26 GeV, ϵ =0.15 eVs, V=900 kV.

MKE KICKERS INSTALLED FOR EXTRACTION TOWARDS LHC

2001

- Lepton cavities removed + impedance reduction (pumping ports) done
- No MKE kickers (11 kickers in total)
- Impedance reduction by ~ 2.5 in the longitudinal plane (from meas.)
- Impedance reduction by ~ 40% in the transverse one (from meas.)

2003

- + 5 MKE kickers in LSS4 (16 kickers in total)
- 2006
 - + 4 MKE kickers in LSS6 (20 kickers in total) 1 MKE kicker shielded on 2 cells
- 2007
 - 1 MKE kicker and 1 MKE has been shielded (19 kickers in total)

FAST VERTICAL SINGLE-BUNCH INSTABILITY AT INJECTION IN 2003 (1/3)

Elias Métral, CARE-HHH-APD BEAM'07, CERN, 05/10/07

FAST VERTICAL SINGLE-BUNCH INSTABILITY AT INJECTION IN 2003 (2/3)

FAST VERTICAL SINGLE-BUNCH INSTABILITY AT INJECTION IN 2003 (3/3)

0.5

0.4

0.3

Next steps:

- Measure mode coupling
- Improve impedance model

BEAM-INDUCED HEATING FROM MKE KICKER

 If a part of the ferrite itself reaches temperatures above the Curie temperature, around 125°C, it looses its magnetic properties and the magnetic field strength will be reduced

VERTICAL RESISTIVE-WALL IMPEDANCE (1/4)

⇒ From the impedance point of view, a SPS kicker can be approximated by the following sketch

VERTICAL RESISTIVE-WALL IMPEDANCE (2/4)

1 MKE kicker \implies Comparison between 2 theories, 3D simul. and meas.

VERTICAL RESISTIVE-WALL IMPEDANCE (3/4)

VERTICAL RESISTIVE-WALL IMPEDANCE (4/4)

1 LHC collimator \implies Comparison between 2 theories (meas. ongoing...)

LONGITUDINAL RESISTIVE-WALL IMPEDANCE (1/2)

1 MKE kicker \implies Comparison between Tsutsui's theory and meas.

LONGITUDINAL RESISTIVE-WALL IMPEDANCE (2/2)

3000

Courtesy of T. Kroyer (APC, 10/11/2006)

MKE kicker longitudinal impedance

MKE-L8, no shielding, movex0y0.s1p

 In a comprehensive measurement campaign data for all types of MKE magnets was collected

MKE-L9, no shielding, CAL1FULL.s1p Printed strips in MKE-L10 MKE-S3, no shielding, DATA00 oct5.D1 MKE-S6, serigraphed / painted stripes on two out of the seven cells, DATA00 oct6.D1 2500 MKE-L10, fully equipped with stripes, S21 1.s1p 2000 7e{Z} [Ω/m] 1500 1000 500 500 1000 1500 2000 0 Frequency [MHz]

 \implies Significant reduction of the (real part here of the) longitudinal impedance (and associated power loss)

SPS VERTICAL IMPEDANCE Im[Z_{v,eff}] (1/2)

Vertical coherent tune shift with intensity at 26 GeV, scaled to 0.5 ns

SPS VERTICAL IMPEDANCE Im[Z_{y,eff}] (2/2)

 Summary and comparison between measurements and theoretical predictions (kickers contribution only)

lm(Z _{y, eff}) [MΩ/m]	Meas	delta	Theory (kickers)	delta	Error delta [%]
2001	19.1		3.5		
2003	22.2	3.1	6.4	2.9	7
2006	23.6	1.4	8.7	2.3	-39
2007	22	-1.6			

Cannot be done for the shielded kicker as we do not know the quadrupolar term!!!

- Im[Z_{y,eff}] of the shielded kicker (using only the dipolar term available) = 0.24 MΩ/m
- Im[Z_{y,eff}] of the same kicker before the shielding (using only the dipolar term) = 0.27 MΩ/m
- Im[Z_{y,eff}] from the vertical space charge impedance (which contributes to the coherent tune shift!) ≈ + 2.6 MΩ/m ⇒ It is + 0.04 MΩ/m in the horizontal plane

FAST VERTICAL INSTABILITY AT INJECTION (1/4)

- Wake-field obtained through ZBASE3 for the 2006 case
- Comparison with the BB resonator model used by B. Salvant for his mode coupling analysis

FAST VERTICAL INSTABILITY AT INJECTION (2/4)

 HEADTAIL simulations with the wake-field from ZBASE3 (table) for the 2006 case

FAST VERTICAL INSTABILITY AT INJECTION (3/4)

Fit of the wake field for the 2006 case

f_r = 2.3 GHz Q = 0.6 Z_y = 3.5 MΩ / m

FAST VERTICAL INSTABILITY AT INJECTION (4/4)

- Real Part of $(v - v_x)/v_s$ -**MOSES** computations MOSES -- MODE COUPLING INSTABILITY IN SPS AT 26 GEV 30/08/07 08.51.50 VERSION 3.3 CPU TIME USED: 0.535-314 (s) with the fitted resonator SPRD = 0.000E+00 NUS = 0.324E-02 4 ENGY = 26.0 (GeV) SGMZ = 16.3 (cm) BETAC = 40.0 (m) REVFRQ= 0.433E-01 (MHz) ALPHA = 0.192E-02 2 CHORM = 0.000E+00 f_r = 2.3 GHz FREO = 0.230E+04 (MHz)RS = 3.50 (MOhm/m) QV = 0.600 = 0.6 LBIN = F 0 MU = 5 Real (v-v_X)/v_S $Z_v = 3.5 M\Omega / m$ -2 -4 0 2 3 I_b (mA) - Imaginary Part of $(v-v_x)/v_s$ -MOSES -- MODE COUPLING INSTABILITY IN SPS AT 26 GEV 30/08/07 08.51.50 VERSION 3.3 CPU TIME USED: 0.535-314 (c) 1.0SPRD = 0.000E+00NUS = 0.324E-02 $I_b^{th} \approx 0.8 \,\mathrm{mA}$ ENGY = 26.0 (GeV) SGMZ = 16.3(cm BETAC = 40.0 (m) REVFRQ= 0.433E-01 (MHz) ALPHA = 0.192E-02 CHORM - 0.000E+00 FREQ = 0.230E+04 (MHz) $I_{b}^{th} = 0.8 \text{ mA}$ RS = 3.50 (MOhm/m) QV = 0.600 LBIN = F 0.0 $\Leftrightarrow N_b^{th} = 1.15 \, 10^{11} \, \mathrm{p}$ Imag $(v-v_X)/v_S$ MU = 5 -0.5 ⇒ Consistent with HEADTAIL -1.0 0 1 2 3

Ib (mA)

20/28

Re[Z_{v.eff}] **FROM HEAD-TAIL GROWTH/DECAY RATES MEAS.**

1999-2006

SPS LONGITUDINAL IMPEDANCE $Im[Z_I/n_{eff}]$ (2/2)

 Summary and comparison between measurements and theoretical predictions (kickers contribution only)

$Im(Z_I/n_{eff})$ [Ω]	Meas	delta	Theory (kickers)	delta	Error delta [%]
2001	4.4		1.2		
2003	6.2	1.8	3.4	2.2	-18
2006	7.4	1.2	5.2	1.8	-33
2007	10.2	2.8	4.4	-0.8	-450

- Im[Z_I/n_{eff}] of the shielded kicker = 0.1 Ω
- $Im[Z_I/n_{eff}]$ of the same kicker before the shielding = 0.4 Ω
- Im[Z_I/n_{eff}] from the space charge impedance (computed here) \approx 1 j Ω^*

* The contribution from space charge was already subtracted in the above given numbers

POWER LOSS

$N_b = 1.210^{11}$	p $M = 4 \times 72$	bunches	es $\sigma_b = 0.7$ i		
	Power loss [W]	Theory	delta		
	2001	2085			
	2003	8027	5942		
	2006	12742	4715		
	2007	10792	-1950		

- Power loss for the shielded kicker = 407 W
- Power loss for the same kicker before the shielding = 1227 W

⇒ It seems that indeed a reduction by a factor of ~3-4 was observed (L. Ducimetiere, private communication)

HEADTAIL SIMULATION IN THE LONGITUDINAL PLANE (1/3)

 $f_r = 1 \text{ GHz}$ Q = 1 $(Z_i / p)_{f=0} = j \times 10 \Omega$

HEADTAIL SIMULATION IN THE LONGITUDINAL PLANE (2/3)

HEADTAIL SIMULATION IN THE LONGITUDINAL PLANE (3/3)

CONCLUSION

- Transverse analytical estimates and measurements of the low frequency inductive effective impedance are in good agreement over the last years (relative values)
- Transverse analytical estimates and measurements of the head-tail growth/decay rates are also in good agreement over the last years (relative values)
- ◆ All the kickers can only explain ~ 50% of the longitudinal and transverse impedances ⇒ Continue the investigation (in addition to the kickers, we looked at the 108 BPMH, 108 BPMV,
 - ~ 1000 pumping ports, the 4 TW 200 MHz cavities, TIDVG: See Appendices)
- 1 major issue in our understanding: Why the longitudinal effective impedance measured in 2007 is ~ 40% higher than in 2006, whereas a reduction was foreseen???

HEADTAIL SIMULATION IN THE LONGITUDINAL PLANE

LONGITUDINAL POTENTIAL-WELL BUNCH LENGTHENING AND MICROWAVE INSTABILITY (1/2)

Figure 17.13: The bunch length measured 600 ms after injection as a function of bunch intensity in 1999 and 2001. Data taken at 26 GeV, ε =0.15 eVs, V=900 kV.

LONGITUDINAL POTENTIAL-WELL BUNCH LENGTHENING AND MICROWAVE INSTABILITY (2/2)

MICROWAVE INSTABILITY WITH DEBUNCHED BEAM

Unstable bunch spectra up to 2 GHz with RF OFF ("similar" beam parameters)

2001

2007

LOCALIZED SPS IMPEDANCE FROM PHASE BEATING VS. INTENSITY

G. Arduini, C. Carli, F. Zimmermann, EPAC 2004 \implies Follow-up this year by R. Calaga

BEAM POSITION MONITORS

108 BPMH and 108 BPMV

 Broad-band impedance (for ALL BPMs)

lm[Z _l /n] (Ω)	0.02		
$Im[Z_y] (M\Omega/m)$	0.07		

 Trapped modes (for ALL BPMs) ⇒ 4 most critical

$\beta_x[m]$	β _y [m]	f _r [GHz]	R _y [MΩ/m]	Q
103	21	0.537	500	1951
103	21	1.836	254	3367
22	101	0.786	180	2366
22	101	2.270	222	5880

⇒ HEADTAIL simulations revealed an instability threshold ~ 1 order of magnitude higher than measured

VACUUM PUMPING PORTS (1/2)

\Rightarrow For all the transitions

VACUUM PUMPING PORTS (2/2)

• Tank gap and intermodule screening \implies To be treated...

Magnet	Location	H aperture	V aperture	Tank gap screening	Intermodule screening
MKP-S I, 5 module	LSS1 MKP-S 11931	100	61	yes	yes
MKP-S II, 5 module	LSS1 MKP-S 11936	100	61	yes	yes
MKP-S III, 2 module	LSS1 MKP-S 11952	100	61	yes	yes
MKP-L IV, 4 module	LSS1 MKP-L 11955	140	54	no	no
spare MKP-S I, 5 module	storage	100	61	yes	yes
spare MKP-S III, 2 module	storage	100	61	yes	yes
spare MKP-L IV, 4 module	(under reconstruction)	140	54	under project	under project
MKQH	LSS1 MKQH 11653	135 *	33.9	No	not applicable
MKQV	LSS1 MKQV 11679	102	56	No	not applicable
MKDH-1	LSS1 MKDH-1 11751	56	97.1	No	not applicable
MKDH-2	LSS1 MKDH-2 11754	56	97.1	No	not applicable
MKDH-3	LSS1 MKDH-3 11756	60	106.1	No	not applicable
MKDV-1	LSS1 MKDV-1 11731	75	56	No	not applicable
MKDV-2	LSS1 MKDV-2 11735	83	56	No	not applicable
spare MKDV-2	AB-BT lab	83	56	No	not applicable
MKE-L2	LSS4 MKE-L 41631	147.7	35	yes	not applicable
MKE-L5	LSS4 MKE-L 41634	147.7	35	yes	not applicable
MKE-S4	LSS4 MKE-S 41637	135	32	yes	not applicable
MKE-S7	LSS4 MKE-S 41651	135	32	yes	not applicable
MKE-L1	LSS4 MKE-L 41654	147.7	35	yes	not applicable
MKE-L10	LSS6 MKE-L 61631	147.7	35	yes	not applicable
MKE-L9	LSS6 MKE-L 61634	147.7	35	yes	not applicable
MKE-S6	LSS6 MKE-S 61637	135	32	yes	not applicable
spare MKE-L8	storage	147.7	35	yes	not applicable
spare MKE-S3	storage	135	32	yes	not applicable

RF CAVITIES

 \implies Im[Z_I/n_{eff}] = 2.7 Ω

 $TIDVG \implies$ High energy beam dump absorber

With or without the Titanium foil the Im[Z_I/n_{eff}] << 1 Ω (preliminary results)

