
PROCEDURES FOR FREQUENCY AND TIME DOMAIN ELECTRO-
MAGNETIC SIMULATIONS IN ASYMMETRIC STRUCTURES 

 
E. Métral, 17/11/2008 

 
Reminder on the issue:  
 - There is no problem for the longitudinal plane. 

- The problem lies in the transverse planes. For more precise analyses of machine 
impedances and related collective effects, several quantities are needed: 
 - Driving (or dipolar) impedance in the horizontal plane. 
 - Driving (or dipolar) impedance in the vertical plane. 
 - Detuning (or quadrupolar) impedance. 
- Usually, depending on how the simulations (or measurements) are made, either only 
the driving impedance is obtained, or the sum (or difference) of the driving and 
detuning impedances. 
- The purpose of this paper is to try to set up general procedures to obtain all the 
relevant quantities from both frequency and time domain analyses. 

 
1) FREQUENCY DOMAIN => Valid for both simulations (e.g. with HFSS) 
and measurements (using wires) 
 
- The “general” transverse impedances Zx,y (in W!, i.e. not normalized by the transverse 
displacement) on a test particle at (x2 = a2 cosq2, y2 = a2 sinq2) from a source at (x1 = a1 cosq1, 
y1 = a1 sinq1), are given by (to 1st order): 
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where  are some coefficients, and with nmZ ,

 ,/ ck ω=        ,1,11,11,11,1 −−−− +++= ZZZZZx        .1,11,11,11,1 −−−− +−−= ZZZZZ y  (2) 

- By definition, the horizontal and vertical driving impedances are given by 

 [ ] ,/m/Ω ,
driving
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while the detuning impedance is given by 

 [ ] ( ) ./2m/Ω 2,02,0
detuning kZZZ −+−=  (4) 

- Neglecting the constants and coupling terms, Eq. (1) can be re-written 
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- It can be clearly seen from Eq. (5) that: 

1) In axi-symmetric structures,  and  . drivingdriving
yx ZZ = 0detuning =Z

2) If  and , then the transverse impedances which are obtained are not the 
driving ones, but the “generalized” ones 
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- Usually the longitudinal impedance Z is obtained through simulations (or measurements) 
using 1 wire (simulating the beam) and the transverse impedance is obtained with 2 wires 
(spaced by ≤ a , with opposite current, simulating a dipole). With the 2-wire method, only the 
driving (or dipolar) impedance is obtained. The procedure is the following: simulate (or 
measure) the longitudinal impedance Z and deduce the transverse one  
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where ch  is the characteristic impedance and  the scattering parameter. The same thing 
has to be done in the vertical plane to obtain . 

Z 21S
driving
yZ

- The transverse generalized impedances can be obtained using 1 wire (at x = a cosq, y = a 
sinq). The longitudinal impedance simulated (or measured) is given by (to 2nd order) 
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where , , 0,01 ZA = 1,00,12 −+= ZZA 1,00,12 −+= ZZA , , 
 and 

2,01,10,24 −− ++= ZZZA

0,22,05 += ZA 1,1 −− + ZZ 1,11,16 −−+= ZZA . 

1) If there is top/bottom and left/right symmetry (fortunately it is the usual case…), the 
situation simplifies a lot î See EPAC06 paper 
(http://accelconf.web.cern.ch/AccelConf/e06/PAPERS/THPCH059.PDF): 

- If a = x0 and q = 0:  
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Scanning x0 gives a parabola. The impedance which can then be obtained is  

 ( ) .2,00,22,00,21, −− ++++= ZZZZZZ xxl  (10) 

http://accelconf.web.cern.ch/AccelConf/e06/PAPERS/THPCH059.PDF


- Similarly, if a = y0 and q = p/2: 

 ( ) ( )[ ] .2,00,22,00,2
2
01654

2
01 −− +++−+=+−−+= ZZZZZyAAAAyAZ y  (11) 

Scanning y0 gives also a parabola. The impedance which can then be obtained is  

 ( ).2,00,22,00,21, −− +++−= ZZZZZZ yyl  (12) 

- Now, if the following relation is satisfied (still to be demonstrated in the general case ï 
Bruno Zotter?) 

 ,2,02,00,20,2 −− +=+ ZZZZ  (13) 

then 
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Therefore, in this case,  
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- In conclusion, the driving impedances are obtained from 2-wire measurements and the 
generalized impedances are obtained through 1-wire measurements. Therefore, the detuning 
impedance can be deduced. A nice cross-check to do is to sum the 2 driving impedances 
obtained through 2-wire measurements and verify that it is equal to the sum of the 2 
generalized impedances (as the detuning impedance disappears!). 

- 2) If there is NO top/bottom or left/right symmetry, the situation is more involved: 

- By scanning a and q (i.e. measuring Z for different values of a and q), A1,2,3,4,5,6 can be 
found. 

- Using the 2-wire technique the driving impedances  can be obtained (as before). driving
,yxZ

- Then, if Eq. (13) is satisfied (which still has to be demonstrated in the general case),  
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- In conclusion, the driving impedances are obtained from 2-wire measurements and the 
detuning impedance can be deduced from 1-wire measurements. 

 



2) TIME DOMAIN => Valid for simulations 
 
- Neglecting the constants and coupling terms, Eq. (5) can be re-written in time-domain as 
follows 
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- Note that ∫
L

yx  are called the transverse wake potentials, whereas  are the 
(driving) wake functions and 

Fds , ( )zW yx
driving
,

( )zW detuning  the (detuning) wake function, where z is the 
distance between the leading (source) and trailing (test) particle. 

- In this case, the idea is to make 2 simulations: 

- The first with  and looking at the transverse field map vs. z for 12 , and 
similarly in the vertical plane. This gives the contribution of the “generalized” wake 
functions 
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- The second with  and looking at the transverse field map vs. z for . In 
this case the detuning wake function is obtained 

01 =x 02 ≠x
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- A good check to make is to try and obtain the detuning wake function from the 
vertical plane with  and looking at the transverse field map vs. z for , 01 =y 02 ≠y
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 which should give the same result as the one obtained from Eq. (19). 

- From Eqs. (18) and (19) (or Eq. (20)), the horizontal and vertical wake functions can 
be obtained in addition to the detuning one. 


