
Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009                                                                                                                                                                /128 1 

WAKE FIELDS AND IMPEDANCES 

  Wake fields (15 slides) 
  Impedances (8) 

  Generalized notion of impedance for asymmetric structures  (24) 

  Dipolar and quadrupolar transverse impedances (and more) 
  1-wire and 2-wire bench measurements 
  Yokoya factors for dipolar and quadrupolar impedances 

  Impedance of an infinitely long smooth beam pipe (31) 
  Impedance and wake potential of a resonator (25) 
  Cut-off frequencies in a circular waveguide (7)  
  Examples of ElectroMagnetic simulations (17) 

  Example from CST => Wake field simulation of a collimator 
  A tertiary LHC collimator chamber with the HFSS code 
  A LHC graphite collimator with the HFSS code 
  The CMS vacuum chamber (in the LHC) with ABCI code  
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WAKE FIELDS (1/15) 

2 

  A beam of charged particles move around an accelerator under 
the Lorentz force produced by the “external” electromagnetic 
fields (from the guiding and focusing magnets, RF cavities etc.) 

  However, the charged particles also interact with their 
environment, inducing image charges and currents which create 
electromagnetic fields called “WAKE FIELDS” 

  Therefore, the motion of the charged particles should be 
computed considering these “perturbations” 

  

€ 

 
F ext = e

 
E ext +

 
υ ×
 
B ext( )

  

€ 

 
F wake = e

 
E wake +

 
υ ×
 
B wake( )

Perturbation 
proportional to the 

beam intensity 
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WAKE FIELDS (2/15) 

3 

1) The rigid-beam approximation 

2) The impulse approximation 

⇒  The beam traverses a piece of equipment 
rigidly, i.e. the wake-field perturbation does 
not affect the motion of the beam during the 
traversal of the impedance  

⇒  The distance z of the test particle behind 
some source particle does not change 

⇒  As the test particle moves at the fixed 
velocity v = β c through a piece of 
equipment, what is important is the impulse 
(and not the force) 

  

€ 

Δ
 p x ,y ,z( ) = dt

 
F x ,y ,s= z + β c t ,t( )

−∞

+∞

∫ = dt e
 
E +  υ ×

 
B ( )

−∞

+∞

∫

  The 2 fundamental approximations 
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WAKE FIELDS (3/15) 
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  Position of the source particle 

  Position of the test particle 

€ 

ssource =υ t

€ 

stest = ssource + z =υ t + z

z < 0 and time-
independent 

  Maxwell equations for a particle in the beam 

  

€ 

 
∇ ×
 
B = µ0 ρ υ

 s + 1
c 2

∂
 
E 
∂ t

  

€ 

 
∇ ×
 
E = − ∂

 
B 
∂ t

  

€ 

 
∇ .
 
B = 0

  

€ 

 
∇ .
 
E = ρ

ε0
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WAKE FIELDS (4/15) 
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  Lorentz force 
  

€ 

 
F = e

 
E +υ  s ×

 
B ( )

  

€ 

 
∇ .
 
F = e ρ

ε0 γ
2 −

e β
c

∂ Es

∂ t

  

€ 

 
∇ .
 
A ×
 
B ( ) =

 
B .
 
∇ ×
 
A ( ) −

 
A .
 
∇ ×
 
B ( )

 =>  

 =>  

  

€ 

 
∇ .
 
F = e ρ

ε0
−υ
 s . µ0 ρ υ

 s + 1
c 2

∂
 
E 
∂ t

 

 
 

 

 
 

 

 
 

 

 
 

  Using                                                                            , it yields 

  Using                                                                                          , it yields 
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∇ ×

 
A ×
 
B ( ) =
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B ( ) −
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∇ .
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∇ ( )
 
A −

 
A .
 
∇ ( )
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WAKE FIELDS (5/15) 
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€ 

 
∇ ×
 
F = − e ∂

∂ t
+ β c ∂

∂ s
 

 
 

 

 
 
 
B 

  Applying now the curl to the impulse, gives 

  

€ 

 
∇ × Δ

 p x ,y ,z( ) = dt
 
∇ ×
 
F x ,y ,s= z + β c t ,t( )[ ]

−∞

+∞

∫

 =>  
  

€ 

 
∇ × Δ

 p x ,y ,z( ) = − e dt ∂
∂ t

+ β c ∂
∂ s

 

 
 

 

 
 
 
B x ,y ,s= z + β c t ,t( )

−∞

+∞

∫

 =>  
  

€ 

 
∇ × Δ

 p x ,y ,z( ) = − e dt d
 
B 

d t
= − e

−∞

+∞

∫
 
B x ,y ,s= z + β c t ,t( )[ ] t = −∞

t = +∞
= 0
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WAKE FIELDS (6/15) 
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  This relation is known as the Panofsky-Wenzel theorem 

  

€ 

 
∇ × Δ

 p x ,y ,z( ) = 0

  It is very general as: 
  No boundary conditions have been imposed so far 
  Only the 2 fundamental approximations have been made 

•  Rigid bunch 
•  Impulse 

  β should be constant and does not need to be 1 

  Another important relation can be obtained when                , taking 
the divergence of the impulse 

€ 

β =1

For β = constant 
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WAKE FIELDS (7/15) 
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€ 

 
∇ .Δ  p x ,y ,z( ) = dt e ρ

ε0 γ
2 −

e β
c

∂ Es

∂ t
 

 
 

 

 
 

−∞

+∞

∫ = −
e
c

dt
∂ Es x ,y ,s= z + β c t ,t( )

∂ t−∞

+∞

∫

Furthermore,  

€ 

d Es

d t
=
∂ Es

∂ t
+
∂ Es

∂ s
d s
d t

=
∂ Es

∂ t
+
∂ Es

∂ s
c

 =>  
  

€ 

 
∇ .Δ  p x ,y ,z( ) = −

e
c

dt
−∞

+∞

∫ d Es

d t
−
∂ Es

∂ s
c

 

 
 

 

 
 

 =>  

  

€ 

 
∇ .Δ  p x ,y ,z( ) = e dt

−∞

+∞

∫
∂ Es x ,y ,s= z + β c t ,t( )

∂ s
=
∂
∂ s

e dt
−∞

+∞

∫ Es x ,y ,s= z + β c t ,t( )
 

 
 
 

 

 
 
 

€ 

Es[ ] t= −∞
t= +∞

= 0
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WAKE FIELDS (8/15) 
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=>  
  

€ 

 
∇ .Δ  p x ,y ,z( ) =

∂Δps

∂ s
=>  

  

€ 

 
∇ ⊥ .Δ

 p ⊥ = 0

€ 

∂ rΔpϑ( )
∂ r

=
∂Δpr
∂θ

  Considering the case of a cylindrically symmetric chamber (using 
cylindrical coordinates                  ), yields the following 3 equations 
from Panofsky-Wenzel theorem  

€ 

1
r

∂Δpz
∂ϑ

 

 
 

 

 
 =

∂Δpϑ
∂z€ 

r ,ϑ , z

€ 

∂Δpr
∂z

=
∂Δpz
∂r

 + a 4th relation, when              , 

€ 

β =1

€ 

∂ rΔpr( )
∂ r

= −
∂Δpθ
∂θ

For β = 1 
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WAKE FIELDS (9/15) 

10 

  We will consider the following source charge density. A macro-
particle of charge                  is assumed to move along the pipe (in 
the s-direction) with an offset              in the           direction and with 
velocity                 (equal to the bunch velocity)  

€ 

Q = Nb e

€ 

r = a

€ 

ϑ = 0

€ 

υ = β c

€ 

ρ r,ϑ , s ; t( ) =
Q
a
δ r−a( ) δp ϑ( ) δ s−υ t( )

=
Qm cos mϑ( )

π a m +1 1+δ m 0( )
δ r−a( ) δ s−υ t( )

m= 0

∞

∑ = ρm
m= 0

∞

∑

using the relation 

€ 

T δp ϑ( ) = T δ ϑ −kT( )
k= −∞

k= +∞

∑ = e
j m 2π ϑ

T

m= −∞

m= +∞

∑
€ 

Q = Nb e

€ 

Qm =Q a m

=>  
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WAKE FIELDS (10/15) 
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€ 

ρ r,ϑ , s ;ω( ) =
Qm cos mϑ( )

υ π a m +1 1+δ m 0( )
δ r−a( ) e − j k s

m= 0

∞

∑

  

€ 

 
J r,ϑ , s;ω( ) = ρ r,ϑ , s;ω( )  υ =

 
J m

m = 0

∞

∑ = ρm
 
υ 

m = 0

∞

∑

€ 

δ s−υ t( ) =
dω
2π

e jω t e − j k s

υ

 

 
 

 

 
 

−∞

+∞

∫

In frequency domain it gives 

using the relation 

€ 

k =
ω
υ
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WAKE FIELDS (11/15) 

12 

  Looking at the longitudinal electric field (Maxwell equation) yields 

€ 

Δpz = Δˆ p z cosmθ

=> (from the previous equations)  

€ 

Δpr = Δˆ p r cosmθ

€ 

Δpθ = Δˆ p θ sinmθ

 and the 4 equations become 

€ 

∂ rΔˆ p ϑ( )
∂ r

= − m Δˆ p r

€ 

−
m
r
Δˆ p z =

∂Δˆ p ϑ
∂z

€ 

∂Δˆ p r
∂z

=
∂Δˆ p z
∂r

€ 

∂ rΔˆ p r( )
∂ r

= − m Δˆ p θ
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WAKE FIELDS (12/15) 

13 

  For m = 0,                          , otherwise the 3rd and 4th equations 
would give a term inversely proportional to r, which is singular at 0  

€ 

Δˆ p r = Δˆ p θ = 0

  For m ≠ 0, the 3rd and 4th equations give 

€ 

∂
∂ r

r
∂ rΔˆ p r( )
∂ r

 

 
 

 

 
 = m2 Δˆ p r

 => 

€ 

Δpr r,θ ,z( )∝ r m−1 cosmθ

  The whole solution can be written as, for m ≥ 0, 

€ 

υΔps r,θ ,z( ) = Fs ds
0

L

∫ = − q Q am r m cosmθ ′ W m z( )

€ 

υΔpr r,θ ,z( ) = Fr ds
0

L

∫ = − q Q am m r m−1 cosmθ Wm z( )

€ 

υΔpθ r,θ ,z( ) = Fθ ds
0

L

∫ = q Q am m r m−1 sinmθ Wm z( )

q (Q) is the  
charge of the 
test (source) 

particle 
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WAKE FIELDS (13/15) 

14 

                 is called the transverse wake function of azimuthal mode 
m and                  is called the longitudinal wake function of 
azimuthal mode m 

  They describe the shock response of the vacuum chamber 
environment  to a δ–function beam which carries an mth moment 

  Mathematically,                    resembles a Green’s function 

  The integrals (on the left) are called wake potentials 

€ 

Wm z( )

€ 

′ W m z( )

€ 

Wm z( )

€ 

′ W 0 z( ) = −
1

q Q
Fs ds

0

L

∫ = −
1
Q

Es ds
0

L

∫

€ 

W1 z( ) = −
1

q Q a
Fx ds

0

L

∫ = −
1
Q a

Ex −υ By( ) ds
0

L

∫

  Longitudinal wake function 
for m = 0 and transverse 
wake function for m = 1 
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WAKE FIELDS (14/15) 
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> 0 just  
after the source 
=> Decelerating 

force 

< 0 just after the source  
=> Same direction of the deflection 

of the source 

From causality 
(for v = c) 
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WAKE FIELDS (15/15) 

16 

  Some comments on the wake fields 
  It is here for cylindrically symmetric structures => More involved 

for asymmetric structures (e.g. quadrupolar wake field) 
  More involved when             , as in this case there are also some 

fields in front of the source particle 

€ 

β ≠1

  Units of the wake fields  

€ 

′ W 0 z( ) = −
υΔps

q Q
→
N m
C2 =

mkg s -2 m
C2 =

V
C

€ 

N =mkg s -2

€ 

V =m2 kg s -3 A -1

€ 

C = As

€ 

W1 z( ) = −
υΔpr
q Q a

→
V
Cm

€ 

′ W m z( )→ V
Cm2m

€ 

Wm z( )→ V
Cm2m−1
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IMPEDANCES (1/8) 
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  The impedances are related to the wake functions by Fourier 
transforms  

€ 

Zm
// ω( ) = − ′ W m z( ) e j k z dz

υ−∞

+∞

∫ = ′ W m t( ) e j k s e − jω t dt
−∞

+∞

∫

€ 

Zm
⊥ ω( ) = j Wm z( ) e j k z dz

υ−∞

+∞

∫ = − j Wm t( ) e j k s e − jω t dt
−∞

+∞

∫

€ 

′ W m z( ) =
1
2π

Zm
// ω( ) e − j k z dω

−∞

+∞

∫ =
1
2π

Zm
// ω( ) e − j k s e jω t dω

−∞

+∞

∫

€ 

Wm z( ) =
j
2π

Zm
⊥ ω( ) e − j k z dω

−∞

+∞

∫ =
j
2π

Zm
⊥ ω( ) e − j k s e jω t dω

−∞

+∞

∫

€ 

Zm
// ω( )→ V

Cm2m × s =
Ω
m2m

€ 

Zm
⊥ ω( )→ V

Cm2m−1 × s =
Ω

m2m−1
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IMPEDANCES (2/8) 
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  As the wake functions are real, it can be shown that 

€ 

Zm
// ω( )[ ]

*
= Zm

// −ω( )

€ 

− Zm
⊥ ω( )[ ]

*
= Zm

⊥ −ω( )

  2 important properties of the impedances 

  As a consequence of the Panofsky-Wenzel theorem 

€ 

Zm
// ω( ) = k Zm

⊥ ω( )
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IMPEDANCES (3/8) 
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  What is the coherent part of the transverse SC impedance 
(considering both electric and ac magnetic images)? 

  In the “SC course”, we saw that 
 the coherent horizontal force in  
 a circular beam pipe is 

€ 

Fx
SC ,coh =

λ e
2 π ε0 γ

2
x 

b2 for  x << b

€ 

λ =
Q
l

=
Nb e
l

→
l→ 0

Q δ s −υ t( )

=> 

€ 

Fx
SC ,coh z ; t( ) =

e
2 π ε0 γ

2 b2
δ z( ) ×Q x 

€ 

W1
SC z( ) = −

1
q Q1

Fx
SC ,coh ds

0

L

∫ = −
L Fx

SC ,coh

q Q1
= −

L
2 π ε0 γ

2 b2
δ z( )€ 

z = s −υ t

or 

€ 

W1
SC t( ) = −

L
2 π ε0 γ

2 b2
δ t( )
υ

=      , with   

€ 

Q1

€ 

a = x 

Behind  
the bunch 
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IMPEDANCES (4/8) 
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€ 

Fx
SC ,coh z ;ω( ) =

e Q1
2 π ε0 γ

2 b2
e − j k s

υ
€ 

δ s−υ t( ) =
dω
2π

e jω t e − j k s

υ

 

 
 

 

 
 

−∞

+∞

∫using the relation 

one has 

=> 

€ 

FT W1
SC t( ) e j k s[ ] = −

L
2 π ε0 γ

2 b2 υ
= −

L Z0
2 π β γ 2 b2

Remembering that                     is the Fourier transform of           
(with a - j added for the transverse plane) one finally obtains  

€ 

Z1
x ω( )

€ 

W1 t( ) e j k s

=> 

€ 

Z1
x ,SC ,coh ω( ) = j L Z0

2 π β γ 2 b2

Fourier 
Transform 

(FT) 
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IMPEDANCES (5/8) 
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  Another (equivalent, i.e. giving the same result) way to define the 
transverse impedance is often used and is given by 

€ 

Z1
x ω( ) =

j
Q1

ds FT Fx
q

 

 
 

 

 
 e j k s

0

L

∫

  Finally, another (equivalent, i.e. giving the same result) way to 
define the impedance is => For coasting beams (                          ) 

€ 

Z1
x ω( ) =

j
Px

FT Fx
q

 

 
 

 

 
 ds

0

L

∫

€ 

Ib = λ υ

€ 

Px = Ib x 

A β is also sometimes added in the denominator  
to cancel the velocity effect in the Lorentz force (magnetic part) 

€ 

λ = constant

In time 
domain 
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IMPEDANCES (6/8) 

22 

  What is the longitudinal SC impedance? 

  In the “SC course”, we saw that 
 the longitudinal space charge  

force for a uniform bunch in a  
 circular beam pipe is 

€ 

Fs
SC = −

e
4π ε0 γ

2

d λ z( )
d z

1+ 2ln b
a

 

 
 

 

 
 

 

 
 

 

 
 

Furthermore,                         =>   

€ 

g0 = 1+ 2ln b
a

 

 
 

 

 
 

Depends on the 
source (it is 0 for a δ-
function considered 

here) 

€ 

Fs
SC = −

e Q
2π ε0 γ

2 ln
b
a

 

 
 

 

 
 ′ δ z( )

€ 

λ =Q δ z( )

€ 

d λ z( )
d z

=Q ′ δ z( )

=>   

€ 

′ W 0, SC z( ) = −
1

e Q
Fs

SC ds
0

L

∫ =
L

2π ε0 γ
2 ln

b
a

 

 
 

 

 
 ′ δ z( )

=
L Z0 c
2π γ 2

ln b
a

 

 
 

 

 
 ′ δ z( ) =

L Z0

2π cβ 2 γ 2
ln b

a
 

 
 

 

 
 ′ δ t( )

€ 

′ δ z( ) =
′ δ t( )
υ 2

€ 

Z0
//, SC ω( ) = − j Lω Z0

2π cβ 2 γ 2
ln b

a
 

 
 

 

 
 

€ 

FT ′ δ t( )[ ] = − j ω
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IMPEDANCES (7/8) 
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  More general definition of the impedances (still for a cylindrically 
symmetric structure) 

€ 

Zm
// ω( ) = −

1
Qm
2 dV Em

// Jm
*∫

€ 

Zm
⊥ ω( ) = −

1
k Qm

2 dV Em
// Jm

*∫

 => For the previous ring-shaped source, it yields 

€ 

Z0
// ω( ) = −

1
Q0

ds Es r = a( ) e j k s

0

L

∫

€ 

Z1
⊥ ω( ) = −

L
kπ aQ1

dϑ Es r = a,ϑ ,s( ) cosϑ e j k s

0

2π

∫

€ 

dV = r dr dϑ ds

In 
frequency 

domain 

In 
frequency 

domain 
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IMPEDANCES (8/8) 
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  As the conductivity, permittivity and permeability of a material 
depend in general on frequency, it is usually better (or easier) to 
treat the problem in the frequency domain (for a circular machine), 
i.e. compute the impedance 

  It is also easier to treat the case 

  Then, a Fourier transform is applied to obtain the wake field in the 
time domain  

  General properties of impedances or wake fields 
  We already saw some of them before but there are more 
  Another one: Directional symmetry of impedance (Lorentz 

reciprocity theorem) => Same impedance from both sides if the 
entrance and exit are the same 

€ 

β ≠1
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GENERALIZED NOTION OF IMPEDANCE (1/24) 

25 

  Axi-symmetric structures => A current density with some 
azimuthal Fourier component creates electromagnetic fields with 
the same azimuthal Fourier component 

€ 

Z m ω( ) = −
1

Q2 dV E m J m
*∫

with 

€ 

J m =
Q

π a m +1 1+δ m 0( )
δ r−a( ) cos mϑ( ) e − j k s

where     is the longitudinal electric field created by this 
current density  

€ 

E m

“Usual” definition of the longitudinal 
impedance (m=0,1,2,…) => In fact Q is 

used here instead of Qm 
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GENERALIZED NOTION OF IMPEDANCE (2/24) 

26 

  Non axi-symmetric structures => A current density with some 
azimuthal Fourier component may create an electromagnetic field 
with various different azimuthal Fourier components => A more 
general beam coupling impedance is defined in order to treat 
coupling of different azimuthal Fourier components  

€ 

Zm,n ω( ) = −
1
Q2 dV Em Jn

*∫
More “general” definition of  
the longitudinal impedance  

(m,n = 0, ±1, ±2,…) 

with 

€ 

Jn =
Q

2 π a n +1 δ r−a( ) e j nϑ e − j k s

where     is the longitudinal electric field created by this 
current density  

€ 

En
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GENERALIZED NOTION OF IMPEDANCE (3/24) 

27 

  Therefore, 

€ 

J 0 = J0

€ 

J m = Jm + J−m

 and (assuming the principle of superposition) 

€ 

Z m ω( ) = −
1

Q2 dV Em + E−m( ) Jm
* + J−m

*( )∫

 => 

€ 

Z 0 = Z0,0

For m ≥ 1 

€ 

Z x ≡ Z 1 = Z1,1 + Z1,−1 + Z−1,1 + Z−1,−1

€ 

Z y ≡ Z 1 with cos→ sin( ) = Z1,1 − Z1,−1 − Z−1,1 + Z−1,−1

€ 

Z m = Zm,m + Zm ,−m + Z−m ,m + Z−m ,−m For m ≥ 1 

For m ≥ 1 
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GENERALIZED NOTION OF IMPEDANCE (4/24) 
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  Consider the case of a source particle at 
and a test particle at  

€ 

x1 = a1 cosϑ1

y1 = a1 sinϑ1

€ 

x2 = a2 cosϑ 2

y2 = a2 sinϑ 2

  The source current density (at the source particle) is given by 

€ 

Jz =Q δ x − x1( ) δ y − y1( ) e − j k s

and 

€ 

δ x − x1( ) δ y − y1( ) =
1
a1
δ r − a1( ) δp ϑ −ϑ1( )

=
1
a1
δ r − a1( ) × 1

2π
e j m ϑ −ϑ 1( )

m= −∞

m= +∞

∑
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=> 

€ 

Jz =
Q
2π a1

δ r − a1( ) e − j k s e j m ϑ −ϑ 1( )

m= −∞

m= +∞

∑

=> 

€ 

Jz =Q δ x − x1( ) δ y − y1( ) e − j k s

= a1
m e − j mϑ1 Jm

m= −∞

m= +∞

∑

  The longitudinal impedance is given by  

€ 

Z = −
1
Q2 dV a1

m e − j mϑ 1 Em
m= −∞

m= +∞

∑
 

 
  

 

 
  a2

n e j nϑ 2 Jn
*

n= −∞

n= +∞

∑
 

 
  

 

 
  ∫

= a1
m a2

n e − j mϑ1 e j nϑ 2 Zm ,n
m ,n
∑

Electric field 
created by the 

source in (1) 

Complex 
conjugate of the 

current density of 
the test particle 

 in (2) 
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which yields, up to the 2nd order, 

€ 

Z = Z0,0 + x1 − j y1( ) Z1,0 + x1 + j y1( ) Z−1,0 + x2 + j y2( ) Z0,1
+ x2 − j y2( ) Z0,−1 + x1 − j y1( ) 2 Z2,0 + x1 − j y1( ) x2 − j y2( ) Z1,−1
+ x2 − j y2( ) 2 Z0,− 2 + x1 − j y1( ) x2 + j y2( ) Z1,1+ x1 + j y1( ) x2 − j y2( ) Z−1,−1
+ x1 + j y1( ) 2 Z− 2,0 + x1 + j y1( ) x2 + j y2( ) Z−1,1 + x2 + j y2( ) 2 Z0,2

  Applying Panofksy-Wenzel theorem (remembering that the 
transverse impedance is defined with an additional j) 

€ 

k Z⊥ =∇2
⊥ Z

=>                                   and 

€ 

k Zx =
∂ Z
∂ x2

€ 

k Zy =
∂ Z
∂ y2
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  The “general” transverse impedances Zx,y (not normalized by the 
transverse displacement) on a test particle at (x2 = a2 cosθ2, y2 = 
a2 sinθ2) from a source at (x1 = a1 cosθ1, y1 = a1 sinθ1), are thus 
given by (to 1st order) 

€ 

k Zx = Z0,1 + Z0,−1( ) + x1 Z x + j y1 − Z1,−1 − Z1,1 + Z−1,−1 + Z−1,1( )
+ 2 Z0,2 + Z0,−2( ) x2 + 2 Z0,2 − Z0,−2( ) j y2

€ 

Z detuning = − 2 Z0,2 + Z0,−2( ) / k=> 
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  2-wire measurements => Here , the current density by 2 wires  
at                        is approximated by 

€ 

x = ± a

€ 

J =Q δ x − a( ) − δ x + a( )[ ] δ y( ) e − j k s

=> 

€ 

J =Q δ x − a( ) δ y( ) − δ x + a( ) δ y( )[ ] e − j k s

€ 

=
δ r − a( ) δp 0( )

a

€ 

=
δ r − a( ) δp π( )

a

=> 

€ 

J =
Q
a
δ r − a( ) δp 0( ) − δp π( )[ ] e − j k s
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=> 

€ 

J =
Q
2π a

δ r − a( ) e − j k s e j mϑ

m= −∞

m= +∞

∑ − e j mϑ e − j m π

m= −∞

m= +∞

∑
 

 
 
 

 

 
 
 

=> 
€ 

=
1 if m is even
−1 if m is odd

€ 

J =
Q
π a

δ r − a( ) e − j k s e j 2m +1( )ϑ

m= −∞

m= +∞

∑

=> 

€ 

J = 2 a 2m +1 J 2m +1
m= −∞

m= +∞

∑



Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009                                                                                                                                                                /128 

GENERALIZED NOTION OF IMPEDANCE (10/24) 

34 

=> 

€ 

Z = −
1

Q2 dV 2 a 2m +1 E 2m +1
m = −∞

m = +∞

∑
 

 
  

 

 
  2 a 2n +1 J 2n +1

*

n = −∞

n = +∞

∑
 

 
  

 

 
  ∫

= 4 a 2m +1 a 2n +1 Z 2m +1,2n +1
m ,n
∑

= 4 a2 Z1,1 + a2 Z−1,1 + a2 Z1,−1 + a2 Z−1,−1( )
= 2 a( )2 Z x

=> 

€ 

Zx
driving =

Z x
k

=
υ Z

ω 2 a( )2

=> If the longitudinal impedance        can be measured (simulated), 
then the transverse (driving or dipolar) impedance can be 
deduced from 2-wire measurements (simulations) 

€ 

Z

=Up to 2nd order 
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 Usually the longitudinal impedance   is calculated from the 
characteristic impedance              and the scattering parameter  
as  

€ 

Z

€ 

Zch

€ 

S21

Characteristic impedance 
Scattering parameter 

€ 

b1
b2

 

 
 

 

 
 =

S11 S12
S21 S22

 

 
 

 

 
 

a1
a2

 

 
 

 

 
 

Reflected (backward) wave 

Direct (forward) wave 

Scattering matrix 
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  1-wire measurements => Here , the current density is 
approximated by 

€ 

J =Q δ x − x0( ) δ y − y0( ) e − j k s

=> (see previous slides) 

€ 

J = a m e − j mϑ 0 Jm
m= −∞

m= +∞

∑

€ 

x0 = a cosϑ 0

y0 = a sinϑ 0

=> 

€ 

Z = −
1
Q2 dV a m e − j mϑ 0 Em

m= −∞

m= +∞

∑
 

 
  

 

 
  a n e j nϑ 0 Jn

*

n= −∞

n= +∞

∑
 

 
  

 

 
  ∫

= a m + n e − j m − n( )ϑ 0 Z m ,n
m ,n
∑
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€ 

Z = A1 + a e − jϑ 0 A2 + a e jϑ 0 A3 + a 2 e − 2 jϑ 0 A4 + a 2 e 2 jϑ 0 A5 + a 2 A6

 with 

=> 

=Up to 2nd order 
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  If there is top/bottom and left/right symmetry (fortunately it is the 
usual case…), the situation simplifies a lot 

  If a = x0 and θ0 = 0 

  If a = y0 and θ0 = π / 2 € 

Z = A1 + x0
2 A4 + A5 + A6( )

= A1 + x0
2 Z x + Z2,0 + Z0,2 + Z−2,0 + Z0,−2( )[ ]

€ 

Z = A1 + y0
2 − A4 − A5 + A6( )

= A1 + y0
2 Z y − Z2,0 + Z0,2 + Z−2,0 + Z0,−2( )[ ]

Scanning x0  
gives a parabola 
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=> IF                                                       , then  

€ 

Z2,0 + Z−2,0 = Z0,2 + Z0,−2

€ 

Z2,0 + Z0,2 + Z−2,0 + Z0,−2 = 2 Z0,2 + Z0,−2( ) = − k Z detuning

Still has to be 
demonstrated in 
the general case 

=> 

€ 

Z = A1 + k x0
2 Zx

driving − Zx
detuning[ ]

€ 

Z = A1 + k y0
2 Zy

driving + Zy
detuning[ ]

Therefore, with 1-wire measurements, only the difference in x and 
sum in y of the driving and detuning impedances can be obtained  
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  If there is NO top/bottom or left/right symmetry, the situation is 
more involved: 

  By scanning a and θ0 (i.e. measuring Z for different values of a 
and θ0), A1,2,3,4,5,6 can be found 

  Then, using the 2-wire technique the dipolar (driving) 
impedances can be obtained: 

  Then compute  

  Then, if                                                          , 

€ 

Z1,−1 + Z−1,1 = Z x − Z y( ) / 2
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  Both 1-wire and 2-wire techniques are required (in asymmetric 
structures) to obtain all the information needed to correctly 
understand/describe the collective effects in accelerators 

  With 2 wires the transverse dipolar (driving) impedances are 
obtained 

  With 1 wire (scanning the wire position), and using the driving 
impedances measured with 2 wires, the detuning impedance can 
be deduced (IF a certain condition is fulfilled => Still to be 
checked in which cases this relation is satisfied or not) 

  The coupling (and high order) terms are (usually) neglected, but 
could also be important in some cases 
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  Example of impedance measurement with 1 wire => Kicker KFA13 
in the CERN PS 
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  Example of impedance measurement with 2 wires => A MKE 
kicker in the CERN SPS 
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  Yokoya factors for dipolar and quadrupolar impedances in 
resistive elliptical pipes (compared to a circular one) 

€ 

π 2

12

€ 

π 2

24

€ 

π 2

8

€ 

−
π 2

24

dip. y dip. + quad. y 

dip. x 

quad. y 

dip. + quad. x quad. x 
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  Finally, the transverse impedances (dipolar and quadrupolar) should 
be weighted by the betatron function at the location of the 
impedance => This is what matters for the effect of a transverse 
impedance on the beam    

€ 

→
βx

βx
average × Z⊥
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  1) Maxwell equations 

  In the frequency domain, time derivatives are replaced by  

  Combining the conduction and displacement current terms yields           

€ 

jω

  

€ 

div
 
E = ρ

εc

with 

€ 

εc = ε0 ε1 = ε0 ′ ε r − j ′ ′ ε r( ) = ε0 εb +
σ

j2π f
€ 

µ =µ0 µ1 =µ0µr 1− j tanϑM( )

  

€ 

 
D = εc

 
E 
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  2) Scalar Helmholtz equations for the longitudinal field components 

Using                                           , one obtains (using the circular 
cylindrical coordinates r, θ, s and assuming the source velocity to 
be along the s axis)   

€ 

1
r
∂
∂ r

r ∂
∂ r

 

 
 

 

 
 +

1
r2

∂2

∂θ 2
+
∂2

∂s2
+ω 2µ εc

 

 
 

 

 
 Hs = 0

€ 

1
r
∂
∂ r

r ∂
∂ r

 

 
 

 

 
 +

1
r2

∂2

∂θ 2
+
∂2

∂s2
+ω 2µ εc

 

 
 

 

 
 Es =

1
εc

∂ ρ
∂ s

+ j ω µ ρ υ

  The homogeneous equation can be solved by separation of 
variables 

€ 

Hs or Es =Θ θ( ) S s( ) R r( )
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⇒ m is called the azimuthal mode number 
(m=1 for pure dipole oscillations) 

and k is called the wave number 

€ 

S s( )= e ± j k s

The axial motion is seen to be a wave with phase velocity 

which may in general differ from the beam velocity   

R (r) is given by 

€ 

ν = k 1−β 2ε1µ1

The solutions of this differential equation are the modified Bessel 
functions                   and     

Radial propagation constant 
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  3) Source of the fields: Ring-beam distribution ⇒ Infinitesimally short, 
annular beam of charge                   and radius       traveling with 
velocity                along the       axis (equal to the bunch velocity) 

€ 

s

  Charge density in the frequency domain (see previous slides) 

€ 

ρ r,ϑ , s;ω( ) =
Qm cos mϑ( )

υ π a m +1 1+δ m 0( )
δ r−a( ) e − j k s

m= 0

∞

∑

=> 

€ 

ρm ∝cos mϑ( ) e − j k s
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  Conclusion for the homogeneous scalar Helmholtz equations 
• For pure dipole oscillations excited by a horizontal cosine 

modulation propagating along the particle beam, one can 
write the solutions for Hs and Es as 

• Sine and cosine are interchanged for a purely vertical 
excitation (see source fields) 

• Only the solutions of the homogeneous Helmholtz 
equations are needed since all the regions considered are 
source free except the one containing the beam where the 
source terms have to be determined separately 

€ 

Es = cos mθ( ) e − j k s C3 Im ν r( ) + C4 Km ν r( )[ ]
€ 

Hs = sin mθ( ) e − j k s C1 Im ν r( ) + C2 Km ν r( )[ ] C1,2,3,4 are 
constants to be 

determined 
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  4) Transverse field components deduced from the longitudinal ones 
using Maxwell equations (in a source-free region) 

€ 

Es = Es0 cos mθ( )

€ 

Er = Er0 cos mθ( )

€ 

Gθ =Gθ 0 cos mθ( )

€ 

Gs =Gs0 sin mθ( )

€ 

Gr =Gr0 sin mθ( )

€ 

Eθ = Eθ 0 sin mθ( )

€ 

Er0 =
j k
ν 2

β µ1
mGs0

r
+
d Es0

d r
 

 
 

 

 
 

€ 

Gθ 0 =
j k
ν 2

mGs0

r
+ βε1

d Es0

d r
 

 
 

 

 
 

€ 

Eθ 0 = −
j k
ν 2

mEs0

r
+ βµ1

dGs0

d r
 

 
 

 

 
 

€ 

Gr0 =
j k
ν 2

β ε1
mEs0

r
+
dGs0

d r
 

 
 

 

 
 



Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009                                                                                                                                                                /128 

IMPEDANCE OF AN INFINITELY LONG SMOOTH BEAM PIPE (7/31) 

55 

  5) Let’s consider the case of the transverse impedance (m = 1) 

€ 

ρ1 =
Q1 cos ϑ( )
υ π a2

δ r−a( ) e − j k s
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  Longitudinal source terms ⇒ Valid for              , i.e. in the vacuum 
between the beam and the pipe = region (1) 

€ 

Es
(s) r,ϑ , s( ) = j C cosϑ F1 u( )

€ 

Gs
(s) r,ϑ , s( ) = j C sinϑ αTE I1 u( )

with 

€ 

C =
ω Q1

π a ε0 υ
2 γ 2

I1 x0( ) e− j k s

        and          will be determined by the boundary conditions at b and d € 

x0 =
k a
γ
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  The transverse components (in the same region) are then 

€ 

Eϑ
(s) r,ϑ , s( ) = γ C sinϑ

F1 u( )
u

+ β αTE ′ I 1 u( )
 

 
 

 

 
 

€ 

Gϑ
(s) r,ϑ , s( ) = − β γ C cosϑ ′ F 1 u( ) +

αTE

β

I1 u( )
u

 

 
 

 

 
 

€ 

Er
(s) r,ϑ , s( ) = − γ C cosϑ ′ F 1 u( ) + β αTE

I1 u( )
u

 

 
 

 

 
 

€ 

Gr
(s) r,ϑ , s( ) = − β γ C sinϑ

F1 u( )
u

+
αTE

β
′ I 1 u( )

 

 
 

 

 
 

 The quantity which enters in the transverse impedance is 

€ 

Eϑ
(s) + υ Br

(s)= Eϑ
(s) + β Gr

(s) =
C sinϑ
γ

×
F1 u( )
u

=> It depends only on           and NOT on           ! 
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  6) Field matching 
  At the interfaces of 2 layers (r = constant) all field strength 

components have to be matched, i.e. in the absence of surface 
charges and currents the tangential field strengths            and   
             have to be continuous 

 Matching of the radial components is redundant   

  At a Perfect Conductor (PC) :                             ⇒  

  At a Perfect Magnet (PM) :                              ⇒ 

  At r = Infinity ⇒ Only                 is permitted as                diverges  

€ 

Es,θ

€ 

Hs,θ

€ 

Es = Eθ = 0

€ 

dGs / d r = 0

€ 

Gs =Gθ = 0

€ 

d Es / d r = 0
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  7) The total (i.e. resistive-wall + space charge) horizontal impedance 

€ 

Zx
Total f( ) =

j
Q1

ds Ex −υ b By[ ]
−∞

+∞

∫ e j k s

=
j
Q1

ds Eϑ
(s) a, − π

2
, s

 

 
 

 

 
 +υ b Br

(s) a, − π
2
, s

 

 
 

 

 
 

 

 
 

 

 
 

−∞

+∞

∫ e j k s

⇒ 

with L the length of the resistive pipe and  € 

Zx
Total f( ) = −

j L Z0 I1 x0( ) K1 x0( )
π a2 β γ 2

+ αTM
j L Z0 I1

2 x0( )
π a2 β γ 2
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  The “wall impedance” (and not the “resistive-wall impedance”) is 
obtained by subtracting from the total impedance, the “incoherent 
part” of the impedance (i.e. which does not depend on the wall, and 
comes from the direct space charge interaction) given by 

€ 

Zx
SC, incoh f( ) = −

j L Z0 I1 x0( ) K1 x0( )
π a2 β γ 2

•  If 

€ 

x0 <<1 ⇒ 

€ 

I1 x0( ) ≈ x0
2

and 

€ 

K1 x0( ) ≈ 1
x0

⇒ 

€ 

Zx
SC, incoh f( ) = −

j L Z0
2 π a2 β γ 2

= −
j L Z0
2 π a2 β

1− β 2( )

Electric Magnetic 
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€ 

αTM =
K1 x1( )
I1 x1( )

1+
γν P1 −Q1( ) β x1 x2( ) 2 γν P1 − kµ1Q2( )

γν x2 − k x1( ) 2 − β x1 x2( ) 2 γν P1 − kµ1Q2( ) γν P1 − kε1Q2( )

 

 
 
 

 

 
 
 

€ 

αTE =
K1 x1( )
I1 x1( )

×
γν β x1 x2 P1 −Q1( ) γν x2 − k x1( )

γν x2 − k x1( ) 2 − β x1 x2( ) 2 γν P1 − kµ1Q2( ) γν P1 − kε1Q2( )

€ 

x2 = ν bwith 

€ 

P1 =
′ I 1 x1( )

I1 x1( )

€ 

Q1 =
′ K 1 x1( )

K1 x1( )

€ 

Q2 =
′ K 1 x2( )

K1 x2( )

€ 

x1 =
k b
γ

  The present formalism can also be used for any number of layers of 
the vacuum pipe. The result for a single layer extending up to infinity 
is given below 
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€ 

Zx
Wall, 1layer f( )=

j L Z0 I1
2 x0( ) K1 x1( )

π a2 β γ 2 I1 x1( )

+ j L Z0 β I1
2 x0( ) K1 x1( ) x1

2 x2
2 γν

′ I 1 x1( )
I1 x1( )

−
′ K 1 x1( )

K1 x1( )

 

 
 

 

 
 

× γν
′ I 1 x1( )

I1 x1( )
−k µ1

′ K 1 x2( )
K1 x2( )

 

 
 

 

 
 /

π a 2 γ 2 I1 x1( )

×

γν x2 −k x1( )2 − β x1 x2( )2 γν
′ I 1 x1( )

I1 x1( )
−k µ1

′ K 1 x2( )
K1 x2( )

 

 
 

 

 
 

× γν
′ I 1 x1( )

I1 x1( )
−kε1

′ K 1 x2( )
K1 x2( )

 

 
 

 

 
 

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 

 

 
 
 

 

 
 
 

 

 

 
 
 

 

 
 
 

⇒ 
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  In the case of 2 layers, the situation is more involved and the 
impedance is given by (for the single layer extending up to infinity) 

€ 

Zx
Wall, 2 layers f( ) =

j L Z0 I1
2 x0( ) K1 x1( )

π a2 β γ 2 I1 x1( )

+
j L Z0 I1

2 s( )
π a2 β γ 2

K1 x1( )
I1 x1( )

E2 α2 −1( )

€ 

γν 2 x2 E2 1−α2( ) + γν 2 x1 x2 βG2 1−η2( )P1 = k x1 E2 1−α2( ) + k x1 x2 βµ12G2 Q2 −η2 P2( )
γν 2 x2G2 1−η2( ) + γν 2 x1 x2 β Q1−P1 +P1 E2 1−α2( )( ) = k x1G2 1−η2( ) + k x1 x2 βε12E2 Q2 −α2 P2( )

ν 3 x4 E2 K32 −α2 I32( ) + ν 3 x3 x4 βµ12G2 Q32 −η2P32( ) = ν 2 x3 E2 K32 −α2I32( ) + ν 2 x3 x4 βµ13G2 K32 −η2 I32( ) Q4 −η3 P4
1−η3

ν 3 x4G2 K32 −η2 I32( ) + ν 3 x3 x4 βε12E2 Q32 −α2P32( ) = ν 2 x3G2 K32 −η2I32( ) + ν 2 x3 x4 βε13E2 K32 −α2 I32( ) Q4 −α3 P4
1−α3

where the parameters (        ,       ) 
are 2 parameters out of 4 
(      ,       ,       and        ), solutions 
of the system of 4 l inear 
equations 

€ 

E2

€ 

α2

€ 

η2

€ 

α2

€ 

E2

€ 

G2

€ 

P1,2 =
′ I 1 x1,2( )

I1 x1,2( )

€ 

Q1,2 =
′ K 1 x1,2( )

K1 x1,2( )
€ 

x1,2 = ν1,2 b

€ 

K32 =
K1 x3( )
K1 x2( )

€ 

I32 =
I1 x3( )
I1 x2( )

€ 

x3 = ν 2 d

€ 

Q32 =
′ K 1 x3( )

K1 x2( )

€ 

P32 =
′ I 1 x3( )

I1 x2( )
€ 

P4 =
′ I 1 x4( )

I1 x4( )

€ 

Q4 =
′ K 1 x4( )

K1 x4( )

€ 

x4 = ν 3 d
€ 

ν1,2,3 = k 1− β 2ε11,2,3 µ11,2,3

€ 

α3 =η3 = 0
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€ 

ρDC =10 µΩm

AC conductivity 

€ 

L =1m

€ 

Yx =
π 2

12
≈ 0.8

Dipolar Yokoya factor 

Same value  
for 1 or 2 layers 

€ 

εb = µr =1

€ 

tanϑM = 0

€ 

γ = 480Courtesy of F. Roncarolo 
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  On a linear plot, a resonance is clearly seen near 1 THz. The 
frequency of the resonance         is given by (when                       , 
which is the case here)  

€ 

fR

€ 

(2 π fR τ )
2 >>1

€ 

fR =
1

π 2
Z0 c

3σDC

τ b 2
 

 
 

 

 
 

1/ 4

≈ 0.94 THz

For a round chamber 
=> The Yokoya factor was 

not applied  
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Same value  
for copper and graphite (i.e. 
independent of conductivity) 

€ 

ρDC
Copper =17 nΩm

€ 

τ Copper = 2.7×10 −14 s

Courtesy of F. Roncarolo 
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“Inductive 
bypass” regime 

Classical “thick-
wall” regime 

High-frequency 
regime 

Courtesy of F. Roncarolo 
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1 100 10
4

10
6

10
8

10
10

1

100

10
4

10
6

10
8

f !Hz"

Z
x
!!#

m
"

Coating with a thin layer  
(5 µm) of copper for β = 1  
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  Example for a dielectric 

€ 

′ ε r = 5

=> Zoom 

1 layer of thickness 1 cm and then a PC 

1 layer of thickness 2.5 cm and then a PC 

=> Zoom 
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1 layer of thickness 10 cm and then a PC 

=> Zoom 

1 layer of infinite thickness 
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  8) Approximate formula for the case of a LHC graphite collimator 

The interesting frequency range in the LHC lies between few kHz and 
few GHz. In this case a simple formula can be derived for a cylindrical 
geometry, which should be valid for any “relatively” good conductor 
with real permeability and the permittivity of vacuum. It can be written 
as (up to a certain frequency which depends on β) 

€ 

Zx
Wall f( ) =

j L Z0

2π b2 β γ 2
+ β

j L Z0

π b2
×

1

1− x2
µr

×
′ K 1 x2( )

K1 x2( )

€ 

x2 = 1+ j( ) b
δ

€ 

δ =
2

µ0µr σω
with 
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  Furthermore, this equation can be simplified even further in the two 
limiting cases using the following equations  

€ 

′ K 1 x2( )
K1 x2( )

=
−
1
x2

if x2 <<1

− 1 if x2 >> 1

  When       , i.e. at very low frequency, the transverse “wall 
impedance” approaches a constant inductive value 

€ 

x2 <<1

€ 

Zx
Wall f → 0( ) = j L Z0

2π β b2
for          

€ 

µr =1

Only electric images contribute  
as there are no ac magnetic images 

when f  0 
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  When                      , the “classical thick-wall formula” is recovered 
(up to a certain frequency which depends on β) 

€ 

x2 >>1

€ 

Zx
Wall f( ) =

j L Z0
2π b2 β γ 2

+ 1+ j( ) β L Z0 µr δ
2 π b3

Coherent part (from the pipe)  
of the SC impedance => Electric 

images + ac magnetic images 

Classical thick-
wall formula for 

the  “RW” 
impedance 

  Note that the (broad) maximum of the real part of the transverse 
impedance is reached when                         , i.e.               , which 
means  

€ 

Re x2[ ] ≈1

€ 

δ ≈ b

€ 

fmax,Re ≈
ρ
b2
×
1

π µ0
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  9) The same approach can be applied for the longitudinal plane  
(m = 0) 

  10) Longitudinal and transverse SC and RW impedances and wake 
fields in the “2nd” (“classical thick-wall”) frequency regime 

  PC = Perfectly Conductor wall 
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m = 0 m = 1 

Used to compute the 
longitudinal impedance 

Used to compute the 
transverse impedance 

€ 

Es
PC 0 = −

Q
2π ε0 γ

2 ln
b
r

 

 
 

 

 
 ′ δ s−υ t( )

€ 

Es
PC1 =

Q1 cos ϑ( )
2π ε0 γ

2
1
r
−
r
b2

 

  
 

  
′ δ s−υ t( )

€ 

Er
PC1 =

Q1 cos ϑ( )
2π ε0

1
r2

+
1
b2

 

  
 

  
δ s−υ t( )

€ 

Eϑ
PC1 =

Q1 sin ϑ( )
2π ε0

1
r2
−
1
b2

 

  
 

  
δ s−υ t( )
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m = 0 m = 1 

€ 

Fs
PC 0 = −

q Q
2π ε0 γ

2 ln
b
r

 

 
 

 

 
 ′ δ s−υ t( )

€ 

Fs
PC1 =

q Q1 cos ϑ( )
2π ε0 γ

2
1
r
−
r
b2

 

  
 

  
′ δ s−υ t( )

€ 

Fr
PC1 =

q Q1 cos ϑ( )
2π ε0 γ

2
1
r2

+
1
b2

 

  
 

  
δ s−υ t( )

€ 

Fϑ
PC1 =

q Q1 sin ϑ( )
2π ε0 γ

2
1
r2
−
1
b2

 

  
 

  
δ s−υ t( )

Force on a particle 
with charge q 
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m = 0 m = 1 

€ 

Z//
PC 0 ω( ) = − j Lω Z0

2π cβ 2 γ 2
ln b

a
 

 
 

 

 
 

€ 

W //
PC 0 t( ) =

L Z0
2π cβ 2 γ 2

ln b
a

 

 
 

 

 
 ′ δ t( )

For L = 2 π R 

€ 

Z//
PC 0 ω( ) = − j ω Z0

ω0 β γ
2 ln

b
a

 

 
 

 

 
 

€ 

W //
PC 0 t( ) =

Z0
ω0 β γ

2 ln
b
a

 

 
 

 

 
 ′ δ t( )

For L = 2 π R 

€ 

Z⊥
PC1 ω( ) = − j L Z0

2π β γ 2
1
a2

−
1
b2

 

 
 

 

 
 

€ 

W⊥
PC1 t( ) =

L Z0
2π β γ 2

1
a2

−
1
b2

 

 
 

 

 
 δ t( )

€ 

Z⊥
PC1 ω( ) = − j R Z0

β γ 2
1
a2

−
1
b2

 

 
 

 

 
 

€ 

W⊥
PC1 t( ) =

R Z0
β γ 2

1
a2

−
1
b2

 

 
 

 

 
 δ t( )

Behind  
the bunch 
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m = 0 m = 1 

€ 

Fs
RW1 =

q Q1 cos ϑ( ) c r Z0
2π 3 / 2 b3 σ z 3 / 2

€ 

Fr
RW1 =

q Q1 cos ϑ( ) c Z0
π 3 / 2 b3 σ z 1/ 2

€ 

Fϑ
RW1 = −

q Q1 sin ϑ( ) c Z0
π 3 / 2 b3 σ z 1/ 2

  Resistive object (with β = 1) 
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m = 0 m = 1 

€ 

Z//
RW 0 ω( ) = 1+ j( ) L

2π b
ω Z0
2 c σ

€ 

Z⊥
RW1 ω( ) = 1+ j( ) L Z0

π b3
1

2 µ0 σ ω

€ 

W //
RW 0 t( ) = −

L
4π 3 / 2 b

Z0
c σ

×
1
t 3 / 2

€ 

W⊥
RW1 t( ) = −

L
π 3 / 2 b3

c Z0
σ

×
1
t1/ 2
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CAVITY RESONANCE 
Courtesy of A. Hofmann 
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  RLC circuit equivalent to a cavity resonance 

= Shunt impedance 

€ 

Rs

= Capacity 

€ 

C

= Inductance 

€ 

L
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  In a real cavity, these 3 parameters cannot easily be separated => We 
use some other related parameters which can be measured directly 

= Resonance (angular) frequency 

€ 

ωr =
1
L C

= Quality factor 

€ 

Q = Rs
C
L

=
Rs

Lωr

= Rs C ωr

= Damping rate 

€ 

α =
ωr

2Q
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  If this circuit is driven by a current I, the voltages across each 
element are 

€ 

Vr = Rs IR

€ 

VC =
1
C

IC dt∫

€ 

VL = L d IL
d t

€ 

V =VR =VC =VL

€ 

I = IR + IC + IL
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 =>  

€ 

˙ I = ˙ I R + ˙ I C + ˙ I L =
˙ V R
Rs

+ C ˙ ̇ V C +
VL

L

 =>  

€ 

˙ ̇ V + ωr

Q
˙ V +ωr

2 V =
ωr Rs

Q
˙ I 

 The solution of the homogeneous equation is a damped oscillation 

€ 

V t( ) = ˆ V e −α t cos ωr 1− 1
4 Q2 t + φ

 

 
 

 

 
 

or  

€ 

V t( ) = e −α t A cos ωr 1− 1
4Q2 t

 

 
 

 

 
 + B sin ωr 1− 1

4Q2 t
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  Response of the RLC circuit (representing a cavity) to a δ-function 
pulse (= very short bunch) at time t = 0 

Courtesy of A. Hofmann 
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 The charge q induces a voltage in the capacity 

€ 

V 0+( ) =
q
C

=
ωr Rs

Q
q

 The energy stored in the capa (= energy lost by the charge)  is 

€ 

U =
1
2
C V 2 0+( ) =

q2

2 C
=
ωr Rs

2Q
q2 =

V 0+( )
2

q = kpm q
2

Parasitic loss mode factor 
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 The charged capa will now discharge 1st through the resistor and 
then also through the inductance 

€ 

˙ V 0+( ) =
˙ q 
C

=
IR

C
= −

V 0+( )
C Rs

= −
ωr

2 Rs

Q2 q = −
2ωr kpm

Q
q

 The voltage in this resonant circuit has now the initial conditions 

€ 

V 0+( ) = 2 kpm q = A

€ 

˙ V 0+( ) = −
2ωr kpm

Q
q = Bω r −α A

€ 

ω r =ωr 1− 1
4Q2
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 =>  

€ 

A = 2 kpm q

€ 

B = −
A

2Q 1− 1
4Q2

 =>  

€ 

V t( ) = 2 kpm q e
−α t cos ω r t( ) −

sin ω r t( )

2Q 1− 1
4Q2
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 => A 2nd point charge q’ going through the cavity at a later time t 
will gain or lose the energy 

€ 

U = ′ q V t( )

 This energy gain/loss per unit source and unit test (probe) 
charge is called the wake potential of a point charge or also the 
Green function G(t) 

€ 

G t( ) =
U

q ′ q 
=

V t( )
q

= 2 kpm e −α t cos ω r t( ) −
sin ω r t( )

2Q 1− 1
4Q2

 

 

 
 
 
 

 

 

 
 
 
 

 When                  , it yields 

€ 

Q >>1

€ 

G t( ) = 2 kpm e
−α t cos ω r t( )
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  Response of the RLC circuit (representing a cavity) to a harmonic 
excitation  
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€ 

˙ ̇ V + ωr

Q
˙ V +ωr

2 V =
ωr Rs

Q
˙ I 

€ 

˙ I = − ˆ I ω sin ω t( )

The solution of the homogeneous equation is a damped oscillation 
which disappears after some time. We are left with the particular 
solution 

€ 

V t( ) = A cos ω t( ) + B sin ω t( )
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 =>  

€ 

A =
Rs

ˆ I 

1+ Q2 ωr
2 −ω 2

ωr ω

 

 
 

 

 
 

2

€ 

B = − A Q ωr
2 −ω 2

ωr ω

 

 
 

 

 
 

 =>  

€ 

V t( ) = Rs
ˆ I 

cos ω t( ) −Q ωr
2 −ω 2

ωr ω

 

 
 

 

 
 sin ω t( )

1+ Q2 ωr
2 −ω 2

ωr ω

 

 
 

 

 
 

2

In phase with excitation  
=> Can absorb energy  

=> Resistive term 

Out of phase with excitation  
=> Cannot absorb energy  

=> Reactive term 
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  Complex notations (involving positive and negative frequencies, as 
opposed to the only positive frequencies used before) 

€ 

I = ˆ I e jω t

Looking for a particular solution (of the differential equation) of the 
form                               , yields the impedance 

€ 

V t( ) =V0 e
jω t

€ 

Z ω( ) =
V0
ˆ I 

=
Rs

1 + j Q ω
ωr

−
ωr

ω

 

 
 

 

 
 

= ZR ω( ) + j ZI ω( )
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For a large quality factor, the impedance is only large for 
or 

€ 

ω ≈ωr

€ 

ω −ωr

ωr

=
Δω

ωr

<<1

€ 

Z ω( ) ≈ Rs

1− j 2Q Δω
ωr

1+ 4 Q2 Δω
ωr

 

 
 

 

 
 

2
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  One can check that (using the useful relations in “Introduction”) 

€ 

Gm
// t( ) =

1
2π

Zm
// ω( ) e jω t dω

−∞

+∞

∫

€ 

Zm
// ω( ) = Gm

// t( ) e − jω t dt
−∞

+∞

∫ = Gm
// t( ) e − jω t dt

0

+∞

∫

As there is no field 
before the particles 

arrive 

€ 

Gm
// t( ) =

ωr Rs

Q
e −α t cos ω r t( ) − α

ω r
sin ω r t( )

 

 
 

 

 
 € 

Zm
// ω( ) =

Rs

1+ j Q ω
ωr

−
ωr

ω

 

 
 

 

 
 

€ 

α =
ωr

2Q
€ 

ω r =ωr 1− 1
4Q2
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  The Panofsky-Wenzel theorem requires that the same resonator 
also gives a transverse impedance  

€ 

Zm
⊥ ω( ) =

c
ω
Zm
// ω( ) =

c
ω

Rs

1+ j Q ω
ωr

−
ωr

ω

 

 
 

 

 
 

=
ωr

ω
R⊥

1+ j Q ω
ωr

−
ωr

ω

 

 
 

 

 
 

€ 

R⊥ =
c
ωr

Rs with 

€ 

Gm
⊥ t( ) =

j
2π

Zm
⊥ ω( ) e jω t dω

−∞

+∞

∫ => 

€ 

Gm
⊥ t( ) =

ωr
2 R⊥

Qω r
e −α t sin ω r t( )
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  Example 1 in the longitudinal plane (resonator wake field) 

0 5 10 15 20 25
!2

!1

0

1

2

t !ns"

G
l
!V#n

C
" € 

Rs = 20Ω

€ 

fr =1GHz

€ 

Q =100
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  Example 1 in the longitudinal plane (resonator impedance) 

0.90 0.95 1.00 1.05 1.10

!20

!10

0

10

20

f !GHz"

Z
l
!""
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  Example 2 in the longitudinal plane (resonator wake field) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
!200

!100

0

100

200

t !ns"

G
l
!V#n

C
"

€ 

Rs = 20Ω

€ 

fr =1GHz

€ 

Q =1
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  Example 2 in the longitudinal plane (resonator impedance) 
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (22/25) 

101 

  Example 3 in the transverse plane (resonator wake field) 
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (23/25) 
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  Example 3 in the transverse plane (resonator impedance) 
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (24/25) 
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  Example 4 in the transverse plane (resonator wake field) 
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IMPEDANCE AND WAKE POTENTIAL OF A RESONATOR (25/25) 

104 

  Example 4 in the transverse plane (resonator impedance) 
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CUT-OFF FREQUENCIES IN A CIRCULAR WAVEGUIDE (1/7) 

105 

  One distinguishes between (in vacuum) 
  TM (Transverse Magnetic) modes 
  TE (Transverse Electric) modes 

€ 

1
r
∂
∂ r

r ∂
∂ r

 

 
 

 

 
 +

ω
c

 

 
 

 

 
 
2

− k 2 − m
2

r2
 

 
 

 

 
 R r( ) = 0

  TM 

€ 

Bs = 0

=> 

€ 

Es = e jω t Θ θ( ) S s( ) R r( )

€ 

Θ θ( )= e ± j mθ

€ 

S s( )= e ± j k s

€ 

1
r
∂
∂ r

r ∂
∂ r

 

 
 

 

 
 +

1
r2

∂2

∂θ 2
+
∂2

∂s2
+ω 2µ εc

 

 
 

 

 
 Es = 0

See previous slides 

with 
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CUT-OFF FREQUENCIES IN A CIRCULAR WAVEGUIDE (2/7) 
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The solution of this differential equation is the mth Bessel function 

€ 

R r( ) = Jm kr r( )

with 

€ 

kr
2 =

ω
c

 

 
 

 

 
 
2

− k 2 Radial wave number 

=> 

€ 

Es = Esm0 Jm kr r( ) e j mθ e j ω t − k s( )

€ 

Eθ = 0

See (before) general relations 
between longitudinal and 
transverse components 

and                   if  

€ 

Es = 0
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CUT-OFF FREQUENCIES IN A CIRCULAR WAVEGUIDE (3/7) 

107 

The propagation modes are determined by the boundary condition for   
                           at the pipe radius    

€ 

Es = Eθ = 0

€ 

r = b

€ 

kr , mn =
jmn
b

where          is the nth zero of the mth Bessel function 

€ 

jmn

=> The frequency of the mode TMmn is given by 
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ω
c
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=
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+ k 2

=> 

€ 

f =
c
2π

jmn
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2
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CUT-OFF FREQUENCIES IN A CIRCULAR WAVEGUIDE (4/7) 

108 

The cut-off frequency of the TMmn mode is defined by  

€ 

fTM mn

cut−off =
c
b
×
jmn
2π

Below this frequency propagation is not possible as in this case 
and therefore       is not real  

€ 

k 2 < 0

The lowest cut-off frequency is given by the 1st zero of the Bessel 
function of 0th order, which is  

€ 

j01 ≈ 2.4

€ 

fTM 01

cut−off =
c
b
×
2.4
2π

≈ 0.4 c
b=> 

€ 

k



Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009                                                                                                                                                                /128 

CUT-OFF FREQUENCIES IN A CIRCULAR WAVEGUIDE (5/7) 

109 

  TE 

However, in this case the boundary condition (at the pipe 
radius               ) is               , which is equivalent to (looking at the 
relations between longitudinal and transverse components)  
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Es = 0
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+
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 Bs = 0

€ 

Br = 0

€ 

r = b

€ 

d Bs

d r
= 0

€ 

Bs = Bsm0 Jm kr r( ) e j mθ e j ω t − k s( )

A similar analysis as before can be performed, leading to  



Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009                                                                                                                                                                /128 

CUT-OFF FREQUENCIES IN A CIRCULAR WAVEGUIDE (6/7) 
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=> 

€ 

kr , mn =
′ j mn

b

where          is the nth zero of the derivative of the mth Bessel function 

€ 

′ j mn

=> The frequency of the mode TEmn is given by 
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CUT-OFF FREQUENCIES IN A CIRCULAR WAVEGUIDE (7/7) 

111 

The cut-off frequency of the TEmn mode is defined by  

€ 

fTEmn

cut−off =
c
b
×

′ j mn

2π

Below this frequency propagation is not possible as in this case 
and therefore       is not real  

€ 

k 2 < 0

The lowest cut-off frequency is given by the 1st zero of the derivative 
of the Bessel function of 1th order, which is  

€ 

′ j 11 ≈1.84

€ 

fTE11
cut−off =

c
b
×
1.84
2π

≈ 0.3 c
b=> 

€ 

k
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (1/17) 

112 

  Example from CST (Computer Simulation Technology: http://www.cst.com/
Content/Applications/Article/Wake+Field+Simulation+of+a+Collimator) => Wake field 
simulation of a collimator 
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (2/17) 

113 

  A tertiary LHC collimator chamber with the HFSS code 
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (3/17) 

114 

=> One can already anticipate some resonances (trapped modes) 
above the lowest (i.e. of the largest beam pipe radius b) cut-off 
frequency  

€ 

fcut−off
lowest [GHz] ≈ 10

b [cm]

As                                             , the first resonance should be around 1 GHz 

€ 

blargest =
212
2
mm =10.6 cm
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (4/17) 

115 
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (5/17) 
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (6/17) 
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (7/17) 

118 

Power loss for mode i 
See GR’s talk 
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (8/17) 

119 
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (9/17) 

120 

  A LHC graphite collimator with the HFSS code 

COAXIAL WIRE METHOD 
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (10/17) 

121 

DOUBLE WIRE METHOD 
(X) 
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (11/17) 
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DOUBLE WIRE METHOD 
(Y) 
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (12/17) 

123 

Improved log formula for distributed  
(i.e. not lumped) impedances 
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (13/17) 

124 

Longitudinal impedance => Real (imaginary) part in red (green) 
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (14/17) 
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Horizontal impedance 
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (15/17) 
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  The CMS vacuum chamber (in 
the LHC) with ABCI code  

IP5 

IP5 

IP5 
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EXAMPLES OF 
ELECTROMAGNETIC 
SIMULATIONS (16/17) 

127 

(1) 

(2) 

(3) 

=> The resonance frequency of the 1st 
mode is shifted as expected from 
something between 450 and 500 MHz 
to ~ 750 MHz (when the larger beam 
pipe radius reduces from 25 cm to 16 
cm) 
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EXAMPLES OF ELECTROMAGNETIC SIMULATIONS (17/17) 
Example of simulated longitudinal wake potential for the case of the old design 
without tapering 

Another convention  
as the one used before 

as it is < 0 just after 
the source 


