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BUNCHED-BEAM TRANSVERSE  
COHERENT INSTABILITIES 

  (Single-bunch linear) Head-Tail phase shift (10 Slides) 

  Vlasov formalism (7) 

  Low intensity => Head-tail modes: (Slow) head-tail instability (43) 

  High intensity => Coupling of the head-tail modes: Transverse 
Mode Coupling Instability (TMCI) or (Fast) head-tail instability (40) 

  Transverse coupled-bunch instability in time domain (11) 
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HEAD-TAIL PHASE SHIFT (1/10) 
  Let’s have a look first to the effect of chromaticity on the transverse 

bunch dynamics, as it is the key ingredient for instabilities 
  Equation of motion for a single particle in longitudinal phase space 

(using polar coordinates) considering only the linear force and 
neglecting collective effects (see previous courses) 

2 

€ 

η C
2πQs

δ s ; r , φs( ) = r sinφz

€ 

z s ; r , φs( ) = r cosφz

€ 

φz =
2πQs

C
s + φs

  After a transverse kick the particle also undergoes transverse motion 
which, turn after turn (n = s / C), can be described by   

€ 

y n ; r , φs( ) = A sin 2π nQy + ϑ n ; r , φs( )[ ]
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HEAD-TAIL PHASE SHIFT (2/10) 

 with, assuming a purely linear chromaticity, 

3 

€ 

ϑ n ; r , φs( ) = 2π ΔQy dk
0

nC

∫

 => 

€ 

ϑ n ; r , φs( ) =
2π
C

ds ′ Q y δ s ; r , φs( )
0

n C

∫
€ 

ΔQy = ′ Q y δ s ; r , φs( )

€ 

k =
s
C

 => 

€ 

ϑ n ; r , φs( ) = −
2π ′ Q y
ηC

z n C ; r , φs( ) − z 0 ; r , φs( )[ ]

  This phase shift can then be expressed as a function of the actual 
position                            of the particle in the longitudinal phase space 

€ 

τ ≡
z
β c

,δ
 

 
 

 

 
 

€ 

δ = −
′ z 
η
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HEAD-TAIL PHASE SHIFT (3/10) 

4 

€ 

r cos φs( ) = r cos 2π nQs + φs − 2π nQs( )

= z cos 2π nQs( ) +
η C
2πQs

δ sin 2π nQs( )

 => 

€ 

ϑ n ; r , φs( ) ≡ϑ n ; τ ,δ( ) = −
Ω0 ′ Q y
η

1− cos 2π nQs( )[ ] τ +
′ Q y

Qs

sin 2π nQs( ) δ

=> 

€ 

y n ; τ ,δ( ) = A cos
′ Q y

Qs

δ sin 2π nQs( )
 

 
 

 

 
 sin 2π nQy −

Ω0 ′ Q y
η

τ 1− cos 2π nQs( )[ ]
 

 
 

 

 
 

+ A sin
′ Q y

Qs

δ sin 2π nQs( )
 

 
 

 

 
 cos 2π nQy −

Ω0 ′ Q y
η

τ 1− cos 2π nQs( )[ ]
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HEAD-TAIL PHASE SHIFT (4/10) 

5 

  At turn n, the transverse excursion                  of the slice             can 
then be obtained by multiplying the previous relation by the actual 
longitudinal distribution                          of the bunch, integrating over                         
      and normalizing the result    € 

< y > ˆ τ ; n( )

€ 

ˆ z ≡ β c ˆ τ 

€ 

ρ ˆ τ ,δ ; n( )

€ 

δ

€ 

< y > ˆ τ ; n( ) = A ˆ τ ; n( ) sin 2π nQy + φy ˆ τ ; n( )[ ] + B ˆ τ ; n( ) cos 2π nQy + φy ˆ τ ; n( )[ ]

 with 

€ 

A ˆ τ ; n( ) = A
dδ ρ ˆ τ ,δ ; n( )∫ cos

′ Q y
Qs

δ sin 2π nQs( )
 

 
 

 

 
 

dδ ρ ˆ τ ,δ ; n( )∫

€ 

B ˆ τ ; n( ) = A
dδ ρ ˆ τ ,δ ; n( )∫ sin

′ Q y
Qs

δ sin 2π nQs( )
 

 
 

 

 
 

dδ ρ ˆ τ ,δ ; n( )∫

€ 

φy ˆ τ ; n( ) = −
Ω0 ′ Q y
η

ˆ τ 1− cos 2π nQs( )[ ]
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HEAD-TAIL PHASE SHIFT (5/10) 

6 

  After the RF capture, the distribution ρ becomes independent of n 
(assuming no coherent longitudinal oscillations) and is an even 
function of δ 

  
  => 

€ 

< y > ˆ τ ; n( ) = A ˆ τ ; n( ) sin 2π nQy + φy ˆ τ ; n( )[ ]
  If we consider the evolution of 2 longitudinal positions within a 

single bunch separated in time by Δτ, then the phase difference in 
the transverse oscillation of these 2 slices is given by  

€ 

Δφy Δτ ; n( ) = −
Ω0 ′ Q y
η

Δτ 1− cos 2π nQs( )[ ]

  This phase difference is a maximum when               , i.e. 
after ½ a synchrotron period  

€ 

nQs =
1
2
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HEAD-TAIL PHASE SHIFT (6/10) 

7 

  It is directly related to the chromaticity by 

€ 

Δφy
max Δτ( ) = −

2 Δτ Ω0 ′ Q y
η

 or 

€ 

′ Q y = −
η Δφy

max Δτ( )
2 Δτ Ω0

  Furthermore, there is also information related to the decoherence of 
the signal observed. Considering a Gaussian distribution, one has  

€ 

ρ τ ,δ( ) =
1

2 π στ σδ

e
−
τ 2

2στ
2 −

δ 2

2σδ
2 with 

€ 

σδ =
Ω0 Qs

η
στ
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HEAD-TAIL PHASE SHIFT (7/10) 

8 

=> 

€ 

A ˆ τ ; n( ) = A e

−

Ω0 ′ Q y
η

σδ sin 2π n Qs( )
 

 
 

 

 
 

2

2

 

 

 
 

 

 
 

 

 

 
 

 

 
 

=> Therefore, in the presence of non-zero chromaticity, the signal 
envelope decoheres and recoheres every ½ synchrotron period 

  Finally, the signal revealed by a transverse Beam Position Monitor in 
the control room of an accelerator is given by 

€ 

< y > ˆ τ ; n( ) × 1
2π στ

e
−

ˆ τ 2

2στ
2

Longitudinal distribution Transverse excursion of a slice 
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HEAD-TAIL PHASE SHIFT (8/10) 

9 

=> See the Movie for the case of a CERN SPS bunch for the LHC 
(under Windows!) 
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HEAD-TAIL PHASE SHIFT (9/10) 

10 

turn 2 

Head and Tail  
in phase 

1st trace = turn 1 
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HEAD-TAIL PHASE SHIFT (10/10) 

11 

turn 150 

~ Maximum phase 
difference between 

Head and Tail 
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VLASOV FORMALISM (1/7) 

12 

Elias Métral, HHH 2004, CERN, 8-11/11/2004 

SINGLE-PARTICLE EQUATION FORMALISM 

Coupled-bunch modes 
Courant and Sessler 

Head-tail modes 
Pellegrini and Sands 

=> Radial modes    VLASOV FORMALISM  
⇒  Distribution of particles 
⇒  Liouville’s theorem  

 Particular  
impedances 

and oscillation  
modes 

 Generic  
impedances 

and high order  
head-tail 
  modes 

0 

0'  × 
× 

Horizontal stationary distribution  

Coherent motion at 

•  Sacherer’s integral equation 
•  Laclare’s eigenvalue problem 
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VLASOV FORMALISM (2/7) 

13 

  The results discussed before for coasting beams can also be re-
derived using the Vlasov formalism 

  The basic mathematical tool used for the mode representation of the 
beam motion is the Vlasov equation, which describes the collective 
behaviour of a multiparticle system under the influence of 
electromagnetic forces 

  It can be derived from the conservation of the phase-space area (as 
stated by the Liouville’s theorem) 

  To construct the Vlasov equation, one starts with the single-particle 
equations of motion 

  The coordinates      and        (with                    ) should be canonically 
conjugated, which means that they should be derived from a 
Hamiltonian                       by the canonical equations  

€ 

qρ

€ 

pρ

€ 

ρ = x, y, z

€ 

Η qρ , pρ , t( )

€ 

˙ q ρ =
∂Η qρ , pρ , t( )

∂ pρ

€ 

˙ p ρ =−
∂Η qρ , pρ , t( )

∂qρ
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VLASOV FORMALISM (3/7) 

14 

  According to the Liouville’s theorem, the particles, in a non-
dissipative system of forces, move like an incompressible fluid in 
phase space. The constancy of the phase space density   
is expressed by the equation 

where the total differentiation indicates that one follows the particle 
while measuring the density of its immediate neighborhood. This 
equation, sometimes referred to as the Liouville’s theorem, states 
that the local particle density does not vary with time when following 
the motion in canonical variables    

€ 

Ψ qρ ,p ρ , t( )

€ 

dΨ qρ , pρ , t( )
d t

=0
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VLASOV FORMALISM (4/7) 

15 

  Practically, one would like to know the development of this density 
as seen by a stationary observer (like a beam monitor) which does 
not follow the particle 

  It depends now not only directly on the time but also indirectly 
through the coordinates of the moving particles, which change with 
time 

  
 => 

€ 

∂Ψ qρ , pρ , t( )
∂ t

+ ˙ q ρ
∂Ψ qρ , pρ , t( )

∂qρ
+ ˙ p ρ

∂Ψ qρ , pρ , t( )
∂ pρ

= 0

  This expression is the Vlasov equation in its most simple form and is 
nothing else but an expression for the Liouville’s conservation of 
phase-space density seen by a stationary observer  
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VLASOV FORMALISM (5/7) 

16 

  In Liouville’s theorem the phase-space area is only conserved if 
expressed in canonically conjugated variables 

  The same criterion applies to the validity of the Vlasov equation 
  However, these variables are often not very practical for accelerator 

applications, and other coordinates are sometimes used in an 
approximate manner 

  Strictly speaking,        and       are given by external forces 
  Collisions among discrete particles in the system, for example, are 

excluded 
  However, if a particle interacts more strongly with the collective 

fields of the other particles than with its nearest neighbours, the 
Vlasov equation still applies if one treats the collective fields on the 
same footing as the external fields 

  This in fact forms the basis of treating the collective instabilities 
using the Vlasov technique   

€ 

˙ q ρ

€ 

˙ p ρ
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VLASOV FORMALISM (6/7) 

17 

  Vlasov equation for a system of particles subject to simple harmonic 
motions with Hamiltonian 

  Equations of motion 

  Going to polar coordinates, the Vlasov equation writes 

€ 

Η =ω
q2 + p2

2

€ 

˙ q = ∂H
∂ p

= pω

€ 

˙ p = − ∂H
∂q

= − qω

=> 

€ 

˙ ̇ q +ω 2 q = 0

Motion of a 
harmonic oscillator 

€ 

q = r cosφ

€ 

p = − r sinφ

€ 

∂Ψ
∂ t

+ ˙ r ∂Ψ
∂r

+ ˙ φ 
∂Ψ
∂φ

= 0
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VLASOV FORMALISM (7/7) 

18 

€ 

˙ r = 0  As r is a constant of motion =>    

=> 

€ 

∂Ψ
∂ t

+ω
∂Ψ
∂φ

= 0

€ 

φ =ω t

=> 

€ 

∂Ψ
∂ t

= −ω
∂Ψ
∂φ

= −
∂Ψ
∂ t

=>           depends only on r :    

€ 

Ψ

€ 

Ψ r( )
  Once the initial distribution of the beam is given at time t = 0, the 

distribution at time t is obtained by rigidly rotating the initial 
distribution in phase space angle       at a constant angular speed 

  A stationary distribution is any function of r, or equivalently any 
function of the Hamiltonian H  

€ 

φ

€ 

ω

=> 

€ 

∂Ψ
∂ t

=
∂Ψ
∂φ

= 0
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HEAD-TAIL INSTABILITY (1/43) 

19 

SINGLE-PARTICLE TRANSVERSE MOTIONS 

  The transverse motions of a test particle in a bunch are described by 
six coordinates 

  2 of them are related to the longitudinal phase space => The 
parameters              or               will be used 

  Here,   represents the time interval between the passage of the 
synchronous particle and the test particle 

  A purely linear synchrotron oscillation around the synchronous 
particle at frequency       is assumed 

  The motion in the longitudinal plane is assumed to be stable (no 
coherent effect) 

€ 

τ i, ˙ τ i( )

€ 

ˆ τ i,ψi( )

€ 

τ i

€ 

ωs

€ 

˙ ̇ τ i +ωs
2 τ i = 0

€ 

τ i = ˆ τ i cos ωs t +ψi( )
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HEAD-TAIL INSTABILITY (2/43) 

20 

  The other 4 parameters are 2 pairs of coordinates             or             , 
and               or  

  They are related to the transverse phase spaces (horizontal and 
vertical respectively) 

  Here,      and      are the betatron coordinates,     and     are the 
betatron phases at time  . The solution of the equation of 
unperturbed motion, e.g. in the horizontal plane, is written as 

  Reminder: The horizontal betatron frequency is given by (see 
Coasting beams)  

€ 

xi, ˙ x i( )

€ 

ˆ x i,ϕx,i( )

€ 

yi, ˙ y i( )

€ 

ˆ y i,ϕy,i( )

€ 

xi

€ 

yi

€ 

ϕx, i

€ 

ϕy, i

€ 

t

€ 

xi = ˆ x i cos ϕx,i( )

€ 

ϕx,i =ωx,i t + ωξ x
−Qx0Ω0( ) τ i +ϕ0x,i

€ 

ωx,i = Qx 0Ω0 + ˙ ϕ x,i ˆ x i, ˆ y i( )

€ 

ωξ x
= Qx0Ω0

ξx
η

Horizontal 
chromatic 
frequency 
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HEAD-TAIL INSTABILITY (3/43) 

21 

=> In the absence of perturbation the horizontal coordinate satisfies 

€ 

˙ ̇ x i −
˙ ̇ ϕ x,i

˙ ϕ x,i

˙ x i + ˙ ϕ x,i
2 xi = 0

  In the presence of electromagnetic fields induced by the beam, the 
previous equation is modified to 

  

€ 

˙ ̇ x i −
˙ ̇ ϕ x,i

˙ ϕ x,i

˙ x i + ˙ ϕ x,i
2 xi =

e
m0 γ

 
E +  v ×

 
B [ ] x

t ,ϑ =Ωi t − τ i( )( )

The electromagnetic fields must be 
expressed like this when following the 

particle along its trajectory  
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HEAD-TAIL INSTABILITY (4/43) 

22 

SINGLE-PARTICLE TRANSVERSE SIGNALS 

  The horizontal signal            induced at a perfect pick-up electrode 
(infinite bandwidth) at angular position    in the ring by the off-
centered test particle is given by 

where         is the current signal of the particle that moves in the 
external guide field (no self field added) 

€ 

sx,i t,ϑ( )

€ 

ϑ

€ 

sx,i t,ϑ( ) = sz,i t,ϑ( ) xi t( ) = sz,i t,ϑ( ) ˆ x i cos ϕx,i( )

€ 

sz, i t,ϑ( )

  At time          , the synchronous particle starts from           and 
reaches the pick-up electrode at times       satisfying 

€ 

t = 0

€ 

ϑ = 0

€ 

tk
0

€ 

Ω0 tk
0 =ϑ + 2kπ, −∞ ≤ k ≤ +∞
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HEAD-TAIL INSTABILITY (5/43) 

23 

  The test particle is delayed by    . It goes through the electrode at 
times      given by 

  The current signal induced by the test particle is a series of 
impulses delivered on each passage 

  In the time domain,          consists of a series of impulses, the 
amplitude of which    changes at each passage through the 
electrode 

€ 

τ i

€ 

tk

€ 

tk = tk
0 + τ i

€ 

sz,i t,ϑ( ) = e δ t − τ i −
ϑ
Ω0

−
2kπ
Ω0

 

 
 

 

 
 

k= −∞

k= +∞

∑

€ 

sx, i t,ϑ( )

€ 

xi

€ 

sx,i t,ϑ( ) = e ˆ x i cos ϕx,i( ) δ t − τ i −
ϑ
Ω0

−
2kπ
Ω0

 

 
 

 

 
 

k = −∞

k = +∞

∑
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HEAD-TAIL INSTABILITY (6/43) 

24 

  Developing             into exponential functions and using the 
following equation 

 =>  

€ 

cos ϕx, i( )

€ 

δ u − 2kπ
Ω0

 

 
 

 

 
 

k= −∞

k= +∞

∑ =
Ω0

2π
e j kΩ0 u

k= −∞

k= +∞

∑

€ 

sx,i t,ϑ( ) =
eΩ0

2π
ˆ x i

e jϕ x,i + e− jϕ x,i

2
e j k Ω0 t−τ i( ) −ϑ[ ]

k = −∞

k = +∞

∑

  Using now 

€ 

e− j u ˆ τ i cos ω s t + ψ i( ) = j−m Jm u ˆ τ i( ) e j m ω s t + ψ i( )

m= −∞

m= +∞

∑

Bessel function of mth order 
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HEAD-TAIL INSTABILITY (7/43) 

25 

=> 

€ 

sx,i t,ϑ( ) =
eΩ0

4π
ˆ x i e

j ω x,i t + ϕ 0x,i( ) j−m Jm,x k, ˆ τ i( ) e j kΩ0 +mω s( ) t + mψ i − kϑ[ ]

m,k
∑

neglecting the complex conjugate               and with 

€ 

e−jϕ x, i

€ 

Jm,x k, ˆ τ i( ) = Jm k +Qx,i( ) Ω0 −ωξ x[ ] ˆ τ i{ } ≈ Jm k +Qx0( ) Ω0 −ωξ x[ ] ˆ τ i{ }

  Using the Fourier transform, one obtains 

€ 

sx,i ω,ϑ( ) =
eΩ0

4π
ˆ x i e

jϕ 0x,i j−m Jm,x k, ˆ τ i( )
m,k
∑ δ ω − kΩ0 +ωx,i + mωs( )[ ] e j mψ i − kϑ( )
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HEAD-TAIL INSTABILITY (8/43) 

26 

=> The single particle spectrum is a line spectrum at frequencies 

  Around every betatron line                      , there is an infinite number 
of synchrotron satellites      , the amplitude of which is given by the 
Bessel function: 

  The important point here is that the spectrum is centered at the 
chromatic frequency 

€ 

k +Qx,i( ) Ω0 + mωs

€ 

k +Qx,i( ) Ω0

€ 

m

€ 

Jm k +Qx,i( ) Ω0 −ωξ x[ ] ˆ τ i{ }
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HEAD-TAIL INSTABILITY (9/43) 

27 

  In the absence of perturbation,        ,        and       are constant during 
the motion 

  Therefore, the stationary distribution is a function of the peak 
amplitudes only 

  No correlation between horizontal, vertical and longitudinal planes is 
assumed and the stationary part is thus written as the product of 
three stationary distributions, one for the longitudinal phase space 
and one for each transverse phase space     

€ 

ˆ x i

€ 

ˆ y i

€ 

ˆ τ i

€ 

Ψ0 ˆ x i, ˆ y i, ˆ τ i( )

€ 

Ψ0 = fx 0 ˆ x i( ) fy0 ˆ y i( ) g0 ˆ τ i( )

€ 

g0 ˆ τ i( ) ˆ τ i d ˆ τ i
ˆ τ i = 0

ˆ τ i = τ b / 2

∫ =
1

2π

€ 

fx 0 ˆ x i( ) ˆ x i dˆ x i
ˆ x i = 0

ˆ x i = +∞

∫ =
1

2π

€ 

fy 0 ˆ y i( ) ˆ y i dˆ y i
ˆ y i = 0

ˆ y i = +∞

∫ =
1

2π

STATIONARY DISTRIBUTION 
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HEAD-TAIL INSTABILITY (10/43) 

28 

  Since on average, the beam center of mass is on axis, e.g. the 
horizontal signal as well as the horizontal dipolar magnetic field 
induced by the stationary distribution are null 

€ 

Sx t,ϑ( ) = Nb sx,i t,ϑ( ) fx0 ˆ x i( ) fy0 ˆ y i( ) g0 ˆ τ i( ) ˆ x i ˆ y i ˆ τ i∫∫∫∫∫∫ ×

dˆ x i dˆ y i d ˆ τ i dϕ0x,i dϕ0y,i dψi =0

Number of particles in the bunch 



Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009                                                                                                                                                                /112 

HEAD-TAIL INSTABILITY (11/43) 

29 

PERTURBATION 

€ 

Ψx = Ψ0 + ΔΨx

  In order to get some dipolar fields, density perturbations          that 
describe beam center-of-mass displacements along the bunch are 
assumed 

  The mathematical form of the perturbations is suggested by the 
single-particle signals 

  The kind of perturbation we are looking for is the rigid-dipolar mode. 
This is the mode for which the stationary distribution        is 
displaced from the origin by a small amount and rotate rigidly about 
the origin 

  Expanding this distribution to 1st order and considering a single 
value of m (i.e. considering the case of low intensity coherent modes 
of oscillation, in which the betatron frequency shift remains small 
when compared to the incoherent synchrotron frequency     ), one 
then has for the amplitudes of the perturbations 

€ 

ΔΨx

€ 

fx0 ˆ x i( )

€ 

ωs
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HEAD-TAIL INSTABILITY (12/43) 

30 

€ 

hm
x ˆ x i, ˆ y i, ˆ τ i( ) =

dfx0 ˆ x i( )
dˆ x i

ˆ x m ˆ τ i( ) fy 0 ˆ y i( ) g0 ˆ τ i( )

where     is the coherent (average) horizontal peak betatron 
amplitude associated with a given synchrotron orbit    . Furthermore, 
because of the integral over             ,           and          , the transverse 
signals induced would be null unless one introduces the complex 
conjugates of               in the perturbation term => The betatron 
phases and synchrotron phase are chosen in order to satisfy  

€ 

ˆ x m ˆ τ i( )

€ 

ˆ τ i

€ 

ϕ0x, i

€ 

ϕ0y, i

€ 

ψ i

€ 

ej ϕ 0x, i+ mψ i( )

€ 

ϕ0x,i + mψi = 0

€ 

ΔΨx = hm
x ˆ x i, ˆ y i, ˆ τ i( ) e j Δω c,m

x,i t=> 

€ 

Δωc,m
x,i =ωc − ωx,i ˆ x i, ˆ y i( ) + mωs[ ]with 

Coherent (angular) betatron 
frequency to be determined 
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  In the time domain, the horizontal signal takes the form (for a single 
value m)  

€ 

Sx t,ϑ( ) =
eΩ0

4π
Nb ˆ x i j−m Jm,x k, ˆ τ i( )

k
∑ ×∫∫∫∫∫∫

hm
x ˆ x i, ˆ y i, ˆ τ i( ) e− j kϑ e j kΩ0 +ω c( ) t ˆ x i ˆ y i ˆ τ i dˆ x i dˆ y i d ˆ τ i dϕ0x,i dϕ0y,i dψ i

  In the frequency domain, it becomes  

€ 

Sx ω,ϑ( ) = 2 π 2 Ib e− j kϑ σ x,m k( ) δ ω − kΩ0 +ωc( )[ ]
k
∑

with 

€ 

σ x,m k( ) = j−m 2π hm
x ˆ x i, ˆ y i, ˆ τ i( ) Jm,x k, ˆ τ i( ) ˆ x i

2 dˆ x i ˆ y i dˆ y i ˆ τ i d ˆ τ i∫∫∫

€ 

Ib = Nb e f0 Bunch current 
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  In comparison with the rich spectrum of the test particle, a single 
synchrotron satellite remains 

  The perturbation is coherent with respect to the satellite number m 

  By means of the perturbation, the transverse initial conditions of the 
particles in the bunch have been arranged. The result of this 
perturbation is that the position of the center of mass changes along 
the bunch. The horizontal phase space distribution rotates not at 
incoherent frequency                          exactly but at frequency             , 
due to the perturbations (wake fields) and the frequency spread  

€ 

Qx0Ω0 + mωs

€ 

ωc
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TRANSVERSE COUPLING IMPEDANCE 

  The coupling impedance      , which gather all the characteristics of 
the electromagnetic response of a machine to a passing particle, 
allow us to express the transverse fields in terms of transverse 
signals  

€ 

Zx

  

€ 

 
E +  v ×

 
B [ ] x,y

t,ϑ( ) =
− jβ
2π R

Zx,y ω( ) Sx,y ω,ϑ( ) e jω t dω∫

in Ω / m in A m 
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EQUATION OF COHERENT MOTION 

             satisfies the “reduced” Vlasov equation 

€ 

Ψx

€ 

∂Ψx

∂ t
+
∂Ψx

∂ ˆ x i
ˆ ˙ x i +

∂Ψx

∂ϕ0x,i

˙ ϕ 0x,i +
∂Ψx

∂ ˆ τ i
ˆ ˙ τ i +

∂Ψx

∂ψ i

˙ ψ i = 0

  Dropping the 2nd order terms with respect to the perturbations, 
yields 

€ 

jΔωc,m
x,i hm

x ˆ x i, ˆ y i, ˆ τ i( ) e j Δωc,m
x,i t = −

dfx 0 ˆ x i( )
dˆ x i

ˆ ˙ x i fy0 ˆ y i( ) g0 ˆ τ i( )

  The expression of    can be drawn from the single-particle 
horizontal equation of motion 

€ 

ˆ ̇ x i

€ 

Ψx = fy 0 ˆ y i( )
ˆ y i = 0

ˆ y i = +∞

∫ Ψ ˆ y i dˆ y i dϕ0y,i
ϕ 0y,i = 0

ϕ 0y,i = 2π

∫
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€ 

ˆ ˙ x i =
d
d t

ˆ x i( ) =
d
d t

xi
2 +

˙ x i
˙ ϕ x,i

 

 
 

 

 
 

2 

 
 
 

 

 
 
 

1/ 2

= −
sin ϕx,i( )

˙ ϕ x,i

Fx ≈−
j

2ωx0

e − jϕ x,i Fx

  Here,         has been approximated by       and               by                , 
since the other component can be ignored if the frequency shift is 
small compared to the betatron frequency 

  This leads to  
€ 

˙ ϕ x, i

€ 

ωx0

€ 

sin ϕx, i( )

€ 

j / 2( ) e−jϕ x, i

  

€ 

Fx =
e

m0 γ

 
E +  v ×

 
B [ ] x

t,ϑ =Ω0 t − τ i( )( )with 

€ 

−
j

2ωx0

e− jϕ x,i Fx = −
eπ Ib

2m0 c γQx0

Zx ωk
x( ) σ x,m k( ) jm Jm,x k, ˆ τ i( )

k
∑ e j Δωc,m

x,i t
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where 

€ 

ωk
x = k +Qx0( ) Ω0 + mωs , −∞ ≤ k ≤ +∞

=> 

€ 

jΔωc,m
x,i hm

x ˆ x i, ˆ y i, ˆ τ i( ) e j Δωc,m
x,i t =

dfx 0 ˆ x i( )
dˆ x i

fy0 ˆ y i( ) g0 ˆ τ i( ) ×

eπ Ib

2m0 c γQx0

Zx ωk
x( ) σ x,m k( ) jm Jm,x k, ˆ τ i( ) e j Δωc,m

x,i t

k
∑

  Multiplying both sides by               , where p is an integer, 
developing it in Bessel functions (as seen before) and retaining 
only one value m, one obtains   

€ 

e jϕ x, i e − j pΩ0 τ i

€ 

jΔωc,m
x,i hm

x ˆ x i, ˆ y i, ˆ τ i( ) Jm,x p, ˆ τ i( )=
dfx 0 ˆ x i( )

dˆ x i
fy 0 ˆ y i( ) g0 ˆ τ i( ) ×

eπ Ib

2m0 c γQx0

Zx ωk
x( ) σ x,m k( ) jm Jm,x k, ˆ τ i( ) Jm,x p, ˆ τ i( )

k
∑
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  Using the definition of               , multiplying both sides by       , 
integrating over        and        values and using 

€ 

hm
x ˆ x i, ˆ y i, ˆ τ i( )

€ 

ˆ x i
2 ˆ y i

€ 

ˆ x i

€ 

ˆ y i

€ 

dfx 0 ˆ x i( )
dˆ x i

ˆ x i
2 dˆ x i

ˆ x i = 0

ˆ x i = +∞

∫ = −2 fx0 ˆ x i( ) ˆ x i dˆ x i
ˆ x i = 0

ˆ x i = +∞

∫ = −
1
π

one obtains 

€ 

Ix
−1 ˆ x m ˆ τ i( ) Jm,x p, ˆ τ i( ) g0 ˆ τ i( ) = −

j eπ Ib

2m0 c γQx0

Zx ωk
x( ) σ x,m k( ) jm

k
∑ Jm,x k, ˆ τ i( ) Jm,x p, ˆ τ i( ) g0 ˆ τ i( )

with 

€ 

σ x,m k( ) = j−m 2π
dfx0 ˆ x i( )

dˆ x i
ˆ x m ˆ τ i( ) Jm,x k, ˆ τ i( ) fy 0 ˆ y i( ) g0 ˆ τ i( ) ˆ x i

2 dˆ x i ˆ y i dˆ y i ˆ τ i d ˆ τ i∫∫∫

= −
j−m

π
ˆ x m ˆ τ i( ) Jm,x k, ˆ τ i( ) g0 ˆ τ i( ) ˆ τ i d ˆ τ i∫
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and 

€ 

Ix =
ˆ x i = 0

ˆ x i = +∞

∫
−2π 2 dfx 0 ˆ x i( )

dˆ x i
ˆ x i

2 fy0 ˆ y i( ) ˆ y i

ωc −ωx,i ˆ x i, ˆ y i( ) −mωs

dˆ x i dˆ y i
ˆ y i = 0

ˆ y i = +∞

∫

  Multiplying both sides by        and summing over       values, yields 

€ 

ˆ τ i

€ 

ˆ τ i

€ 

Ix
−1σ x,m p( ) = Kx,m

pk σ x,m k( )
k
∑

with 

€ 

Kx,m
pk =

j e Ib
2m0 c γQx0

Zx ωk
x( ) Jm,x k, ˆ τ i( )

ˆ τ i = 0

ˆ τ i = τ b / 2

∫ Jm,x p, ˆ τ i( ) g0 ˆ τ i( ) ˆ τ i d ˆ τ i
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  In the absence of frequency spread, the previous equation can be 
written as an eigensystem 

€ 

det Kx,m − ωc −ωx0 − mωs( ) I[ ] =0

where    is the identity matrix,         is the matrix whose 
elements are given by 

€ 

I

€ 

Kx,m

€ 

Kx,m
pk
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  The procedure to obtain first order exact solutions, with realistic 
modes and a general interaction, thus consists of finding the 
eigenvalues and eigenvectors of the infinite complex matrix       . 
The result is an infinite number of modes      (              ) of 
oscillation. To each mode, one can associate a coherent frequency 
shift                     (qth eigenvalue of the matrix), a coherent 
spectrum             (qth eigenvector of the matrix) and a coherent 
peak betatron amplitude distribution 

  For numerical reasons, the matrix needs to be truncated, and thus 
only a finite frequency domain is explored 

  Low order eigenvalues and eigenvectors of the matrix      can be 
found quickly by computation, using the relations 

€ 

Kx,m

€ 

mq

€ 

−∞< q<+∞

€ 

ωc −ωx0 − mωs( )q

€ 

σ x,mq k( )

€ 

ˆ x mq ˆ τ i( )

€ 

Kx,m
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€ 

Jm
2 a x( ) x dx

0

X

∫ =
X 2

2
′ J m a X( )[ ] 2 +

1
2

X 2 −
m2

a2
 

 
 

 

 
 Jm

2 a X( )

€ 

x Jm a x( )
0

X

∫ Jm b x( )dx =
X

a2 − b2
aJm b X( )Jm+1 a X( ) −bJm a X( )Jm+1 b X( )[ ]

for 

€ 

a2 ≠ b2

  It is found that the spectrum of mode         is peaked near              
and extends over                   (radians/second). The largest eigenvalue    
                     takes the subscript             . Usually, only diagonal modes              
         are referred to (           dipolar mode,           quadrupolar mode,…) 

€ 

mq

€ 

ω ≈ q +1( ) π /τ b

€ 

~ ±2π /τ b

€ 

ωc −ωx0 − mωs( )q

€ 

q = m

€ 

mm

€ 

m = 0

€ 

m =1

  The horizontal coherent oscillations (over several turns) of a “water-
bag” bunch interacting with a constant inductive impedance are 
shown in the next slides for the first head-tail modes (solving the 
eigensystem) 

€ 

g0 ˆ τ i( ) = 4 / πτb
2( )
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  Finding the eigenvalues and eigenvectors of a complex matrix by 
computer can be difficult in some cases, and a simple approximate 
formula for the eigenvalues          (which will be simply written m in 
the following) is useful in practice to have a rough estimate 

  Multiplying both sides of 

 (without frequency spread) by                        and integrating over          

 values, yields 

€ 

mm

€ 

Ix
−1 ˆ x m ˆ τ i( ) Jm,x p, ˆ τ i( ) g0 ˆ τ i( ) = −

j eπ Ib

2m0 c γQx0

Zx ωk
x( ) σ x,m k( ) jm

k
∑ Jm,x k, ˆ τ i( ) Jm,x p, ˆ τ i( ) g0 ˆ τ i( )

€ 

ˆ x m ˆ τ i( ) g0 ˆ τ i( )

€ 

ˆ τ i

€ 

ωc −ωx 0 −mωs( ) ˆ x m
2 ˆ τ i( ) g0 ˆ τ i( ) ˆ τ i d ˆ τ i

ˆ τ i = 0

ˆ τ i = τ b / 2

∫ =
j eπ 2Ib j 2 m

2m0 c γQx 0

Zx ωk
x( ) σ x,m

2 k( )
k = −∞

k = +∞

∑
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  Let’s now show that 

€ 

π− 2 j− 2 m ˆ x m
2 ˆ τ i( ) g0

2 ˆ τ i( ) ˆ τ i d ˆ τ i
ˆ τ i = 0

ˆ τ i = τ b / 2

∫ =
Ω0

2
k + Qx 0( ) Ω0 −ωξ x

σ x,m
2 k( )

k = −∞

k = +∞

∑

 From                                                                             , one has 

€ 

σ x,m k( ) = −
j−m

π
ˆ x m ˆ τ i( ) Jm,x k, ˆ τ i( ) g0 ˆ τ i( ) ˆ τ i d ˆ τ i∫

€ 

1
2

ω σ x,m
2 ω + ωξ x

+ mωs( ) dω
ω = −∞

ω = +∞

∫ =
π− 2 j− 2 m

2 ˆ τ i = 0

ˆ τ i = τ b / 2

∫
ˆ ′ τ i = 0

ˆ ′ τ i = τ b / 2

∫ ω Jm ω ˆ τ i( ) Jm ω ˆ ′ τ i( ) dω
ω = −∞

ω = +∞

∫
 

 
 
 

 

 
 
 

× ˆ x m ˆ τ i( ) g0 ˆ τ i( ) ˆ τ i d ˆ τ i ˆ x m ˆ ′ τ i( ) g0 ˆ ′ τ i( ) ˆ ′ τ i d ˆ ′ τ i

 Using then the relation 

€ 

ω Jm ω ˆ τ i( ) Jm ω ˆ ′ τ i( ) dω
ω = −∞

ω = +∞

∫ =
2
ˆ τ i
δ ˆ τ i − ˆ ′ τ i( )
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one obtains 

€ 

1
2

ω σ x,m
2 ω + ωξ x

+ mωs( ) dω
ω = −∞

ω = +∞

∫

= π− 2 j− 2 m

ˆ τ i = 0

ˆ τ i = τ b / 2

∫
ˆ ′ τ i = 0

ˆ ′ τ i = τ b / 2

∫ ˆ x m ˆ τ i( ) g0 ˆ τ i( ) d ˆ τ i ˆ x m ˆ ′ τ i( ) g0 ˆ ′ τ i( ) ˆ ′ τ i d ˆ ′ τ iδ ˆ τ i − ˆ ′ τ i( )

Integrating over        values, yields 

€ 

ˆ ′ τ i

€ 

1
2

ω σ x,m
2 ω + ωξ x

+ mωs( ) dω
ω = −∞

ω = +∞

∫ = π− 2 j− 2 m ˆ x m
2 ˆ τ i( ) g0

2 ˆ τ i( ) ˆ τ i d ˆ τ i
ˆ τ i = 0

ˆ τ i = τ b / 2

∫
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Sampling the function                                             at frequencies  
                                    , one has 

€ 

ω σx,m
2 ω +ωξx

+ mω s( )

€ 

ω = k+Qx0( ) Ω0 − ωξx

€ 

ω σ x,m
2 ω + ωξ x

+ mωs( )[ ] sampled =Ω0 ω σ x,m
2 ω + ωξ x

+ mωs( ) ×
k= −∞

k= +∞

∑

δ ω − k +Qx0( ) Ω0 + ωξ x[ ]

Then 

€ 

1
2

ω σ x,m
2 ω + ωξ x

+ mωs( )[ ] sampled dω
ω = −∞

ω = +∞

∫

=
Ω0

2 k= −∞

k= +∞

∑ k +Qx0( ) Ω0 −ωξ x
σ x,m
2 k +Qx0( ) Ω0 + mωs[ ]
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Using the approximation                                                    

the initial equation is finally found 

€ 

ω σ x,m
2 ω + ωξ x

+ mωs( )[ ] sampled dω
ω = −∞

ω = +∞

∫ ≈ ω σ x,m
2 ω + ωξ x

+ mωs( ) dω
ω = −∞

ω = +∞

∫

  Therefore, this leads to  

€ 

ωc −ωx0 −mωs( ) π τ b
2Ω0

8
k +Qx0( ) Ω0 −ωξ x

σ x,m
2 k( )

k= −∞

k= +∞

∑

=
j e Ib

2m0 c γQx0

Zx ωk
x( ) σ x,m

2 k( )
k= −∞

k= +∞

∑

Assuming a “water-bag bunch” 

€ 

g0 ˆ τ i( ) = 4 / πτb
2( )
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Furthermore, the mode m is peaked near the frequency                   
and the approximation                                                     can be used, 
which yields 

€ 

m +1( ) π /τ b

€ 

k +Qx0( ) Ω0 −ωξ x
≈ m +1( ) π /τ b

€ 

ωc −ωx0 −mωs( ) = m +1( ) −1 j eβ Ib
2m0 γQx0Ω0 Lb

Zx ωk
x( ) σ x,m

2 k( )
k= −∞

k= +∞

∑

σ x,m
2 k( )

k= −∞

k= +∞

∑

Full bunch length (in meters) 

Effective impedance 
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  The spectrum                depends on the interaction             . However, 
for a non exact but realistic set of modes, the previous equation 
with               given by the previous figure, can be used to find 
approximate eigenvalues for any           

  A good (proportional) fitting of the power spectrum                     of 
the previous figure is obtained by the following function 

  The power spectrum of mode           is peaked near                          
and extends             (radians/second) as the discrete spectrum 
found numerically in the figure  

€ 

σ x,m k( )

€ 

Zx ωk
x( )

€ 

σ x,m k( )

€ 

Zx ωk
x( )

€ 

hm,m ω( ) =
τ b
2

2π 4 m +1( ) 2 1+ −1( ) m cos ω τ b( )

ωτ b /π( ) 2 − m +1( ) 2[ ]
2

€ 

m

€ 

ω ≈ m +1( ) π /τ b

€ 

~ ±2π /τ b

€ 

σ x,m k( )
2
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  Using the fitting function, Sacherer’s formula for the transverse 
coherent frequency shifts of bunched beam modes is obtained 

€ 

Δωc,mm
x = ωc −ωx0 −mωs( ) = m +1( ) −1 j eβ Ib

2m0 γQx0Ω0 Lb

Zx ωk
x( ) hm,m ωk

x − ωξ x( )
k= −∞

k= +∞

∑

hm,m ωk
x − ωξ x( )

k= −∞

k= +∞

∑

with                                                                                 , for 1 bunch 

€ 

ωk
x = k +Qx0( ) Ω0 + mωs , −∞ ≤ k ≤ +∞

and                                                                                   
for M equi-spaced equi-populated bunches 

€ 

ωk
x = k + Qx0( ) Ω0 + mωs , k = nx + ′ k M , −∞ ≤ ′ k ≤ +∞

Coupled-bunch  
mode number Phase shift between 2  

successive bunches 

€ 

2π nx,y /M
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  The function                      is given by 

€ 

hm,m ω −ωξ x( )

€ 

hm,m ω −ωξ x( ) = pm ω −ωξ x( )
2

where                    is the Fourier transform of the signal                        . 
Here            corresponds to sinusoidal modes given by 

€ 

pm ω −ωξ x( )

€ 

pm t( ) e jωξx t

€ 

pm t( )

€ 

pm t( ) =
cos m +1( ) π t /τ b[ ], m even
sin m +1( ) π t /τ b[ ], m odd

 
 
 

  

  The difference signal from a beam position monitor has thus the 
form  

€ 

Δ − signal∝ pm t( ) e j χx t /τ b + 2π kQx0( )

For the kth revolution 
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Power spectrum  Pick-up (Beam Position Monitor) signal 

€ 

hm,m ω −ωξ x( )

One particular turn 

Time 

 ΔR-signal 

Time 

 ΔR-signal 

  where                    (radians) is the total phase shift between head 
and tail 

  The frequency of the wiggles along the bunch is determined by the 
horizontal chromatic frequency 

  The number of nodes on separate superimposed revolutions gives 
the modulus of the head-tail mode number 

€ 

χx =ωξ x
τ b

€ 

ωξ x

€ 

m
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  Example of slow Head-Tail single-bunch instability in the CERN PS 

  Measurements Stabilisation by linear  
coupling only (i.e. with neither 

octupoles nor feedbacks) 
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  Theoretical predictions 

Here one also clearly  
sees that the chromatic frequency 

has to be > 0 to avoid the most 
critical mode 0 
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  The results obtained with linear coupling between the transverse 
planes for coasting beams can also be extended to the case of 
bunched beams, using “equivalent dispersion relation coefficients”, 

€ 

Ueqx,y
m = Re Δωc,mm

x,y( )

€ 

Veqx,y
m = − Im Δωc,mm

x,y( )

  The beneficial effect of linear coupling has been checked with the 
HEADTAIL code assuming a round chamber (same impedance and 
betatron function in both planes) and only a different chromaticity 
in both planes (in the absence of frequency spread and SC etc.), to 
reveal the  sharing of the instability growth rates (i.e. in fact of the 
chromaticities) 
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~ 1150 ms 

  K = 12 10-3 m-1  

<=> K0 = 1.9 10-5 m-2  

Courtesy of B. Salvant 
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  Finally, Sacherer’s formula is also used to have: (1) an “estimate” of 
the imaginary part of the (effective) coupling impedance by 
measuring the coherent tune shift vs. intensity. However, one has to 
be careful here, remembering that in asymmetric structures, the 
quadrupolar term is also important 

CERN SPS at injection 

Courtesy of H. Burkhardt 
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  (2) an “estimate” of 
the (effective) real 
part of the coupling 
i m p e d a n c e b y 
m e a s u r i n g t h e 
head-tail growth/
decay ra tes vs . 
chromaticity  

From all the 

(20) kickers in 
2006 

f [GHz] 

Courtesy of H. Burkhardt CERN SPS at injection 
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  If the intensity is too high, the different head-tail modes (which are 
standing-wave patterns) cannot be treated independently 

  Reminder: For 0 chromaticity, there is no Head-Tail instability 

  However, even for 0 chromaticity, above a certain intensity 
threshold (called the Transverse Mode Coupling Instability 
threshold), 2 modes can couple leading to the Transverse Mode-
Coupling Instability. In this case a traveling-wave pattern is 
propagating along the bunch   
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  Following the same formalism as before, the starting point is a 
formula we derived before 

which, without frequency spread is written  

€ 

Ix
−1 ˆ x m ˆ τ i( ) Jm,x p, ˆ τ i( ) g0 ˆ τ i( ) = −

j eπ Ib

2m0 c γQx0

Zx ωk
x( ) σ x,m k( ) jm

k
∑ Jm,x k, ˆ τ i( ) Jm,x p, ˆ τ i( ) g0 ˆ τ i( )

€ 

ωc −ωx 0 −mωs[ ] ˆ x m ˆ τ i( ) Jm,x p, ˆ τ i( ) g0 ˆ τ i( )

= −
j eπ Ib

2m0 c γQx0

Zx ωk
x( ) σ x,m k( ) jm

k
∑ Jm,x k, ˆ τ i( ) Jm,x p, ˆ τ i( ) g0 ˆ τ i( )

  Taking into account all the modes m, this leads to 

€ 

ωc −ωx 0 −mωs[ ] ˆ x m ˆ τ i( ) Jm,x p, ˆ τ i( ) g0 ˆ τ i( )

= −
j eπ Ib

2m0 c γQx0

Zx ωk
x( ) σ x k( ) jm

k
∑ Jm,x k, ˆ τ i( ) Jm,x p, ˆ τ i( ) g0 ˆ τ i( )

with 

€ 

σ x k( ) = σ x,m k( )
m
∑
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  Multiplying by                        and integrating, yields    

€ 

−
j −m ˆ τ i
π

€ 

ωc −ωx0 −mωs[ ]σ x,m p( )

=
j e Ib

2m0 c γQx0

Zx ωk
x( ) σ x k( ) Jm,x k, ˆ τ i( ) Jm,x p, ˆ τ i( ) g0 ˆ τ i( ) ˆ τ i d ˆ τ i

0

+∞

∫
k
∑

  The previous low-intensity coherent modes of oscillation are 
recovered when only 1 value of m is considered 

  For the general case (i.e. considering all the modes m), one 
method consists in dividing the previous equation by 

 and integrating over m                                

€ 

ωc −ωx0 −mωs

€ 

σ x p( ) =
j e Ib

2m0 c γQx0

Zx ωk
x( ) σ x k( ) 1

ωc −ωx0 −mωs

Jm,x k, ˆ τ i( ) Jm,x p, ˆ τ i( ) g0 ˆ τ i( ) ˆ τ i d ˆ τ i
0

+∞

∫
m
∑

k
∑
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  Using the matrix notation, it can be written 

€ 

σ x p( ) = ε j Zx ωk
x( ) Mpk σ x k( )

k
∑

 with, when assuming a water-bag bunch,  

€ 

Mpk = 2 B 1
ωc −ωx0

ωs

− m
Jm,x k,τ b

2
u

 

 
 

 

 
 Jm,x p,τ b

2
u

 

 
 

 

 
 u du

0

1

∫
m
∑

€ 

ε =
e Ib

4 π γ m0 c Qx0 Bωs

€ 

B = f0 τ b



Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009                                                                                                                                                                /112 

TMCI (5/40) 

66 

  Method to solve this equation 

  Assume a real coherent betatron frequency shift measured in 
incoherent synchrotron frequency unit 

  Look for the eigenvalues of the matrix 

  Scale the intensity parameter     in order to adjust the 
eigenvalue to unity 

  Examples are given in the next slides 

€ 

ωc −ωx0

ωs

€ 

j Zx ωk
x( )[ ] Mpk[ ]

€ 

ε
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  1) Constant inductive impedance 
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  2) Very short bunch interacting with a Broad-Band impedance 

Mode coupling => Above  
this intensity threshold, the 

betatron frequency will acquire an 
imaginary part => The beam is 

unstable 
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  3) Short bunch interacting with a Broad-Band impedance 
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  4) Long bunch interacting with a Broad-Band impedance 
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  Using the (approximate) sinusoidal modes discussed before 

 and generalizing the bunch spectrum to any mode (m,n) 

 yields   

€ 

pm t( ) =
cos m +1( ) π t /τ b[ ], m even
sin m +1( ) π t /τ b[ ], m odd

 
 
 

  

€ 

hm ,n ω( ) = pm
* ω( ) pn ω( )

€ 

pm ω( ) =
1
2π

pm t( ) e − jω t dt
−∞

+∞

∫
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€ 

hm,n ω( ) =
τ b
2

π 4 m +1( ) × n +1( ) × Fmn

× ωτ b /π( ) 2 − m +1( ) 2{ }
−1
× ωτ b /π( ) 2 − n +1( ) 2{ }

−1

with 

€ 

Fm even
n even = −1( ) m + n( ) / 2 × cos2 ωτ b /2[ ]

€ 

Fm even
n odd =

−1( ) m + n + 3( ) / 2

2 j
× sin ωτ b[ ]

€ 

Fm odd
n even =

−1( ) m + n +1( ) / 2

2 j
× sin ωτ b[ ]

€ 

Fm odd
n odd = −1( ) m + n + 2( ) / 2 × sin2 ωτ b /2[ ]
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  The generalized Sacherer’s formula  for any mode (m,n) is then 
written   

€ 

Δωm,n
x = m +1( ) −1 j eβ Ib

2m0 γQx0Ω0 Lb
Zx
eff( )m,n

€ 

Zx
eff( )m,n =

Zx ωk
x( ) hm,n ωk

x − ωξ x( )
k= −∞

k= +∞

∑

hm,m ωk
x − ωξ x( )

k= −∞

k= +∞

∑
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  Considering the case where 2 adjacent head-tail modes (m and m
+1) undergo a coupled motion, the stability of a high-intensity 
single-bunch beam can be discussed using the following 
determinant, e.g. in the vertical plane 

€ 

ωc − ωy,m − Δωm,m+1
y

− Δωm+1,m
y ωc − ωy,m+1

= 0

€ 

ωy,m =ωy0 + mωs +Δωm,m
ywith 

  Remarks concerning                        : One can see that 

  It is a pure imaginary function 

  It is an odd function 

    € 

hm ,m +1 ω( )

€ 

hm,m+1 ω( ) = −hm+1,m ω( )
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 => 

€ 

Δωm+1,m
y = −km

2 Δωm,m+1
y

€ 

km =
m +1
m +1 +1

  Considering the case of a driving broad-band resonator, the 
coupling impedance is given by 

€ 

Zy ω( ) =
ωr

ω
Rr / 1− jQr

ωr

ω
−
ω
ωr

 

 
 

 

 
 

 

 
 

 

 
 

  The following solutions are obtained 

€ 

ωc
± =
1
2
× 2ωy0 + 2m +1( ) ωs +Δωm,m

y +Δωm+1,m+1
y[ ]

±
1
2

ωs +Δωm+1,m+1
y −Δωm,m

y( ) 2 −4 km2 Δωm,m+1
y( ) 2
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  Writing 

€ 

Δωm,m
y = a0 Ib

€ 

Δωm+1,m+1
y = b0 Ib

€ 

Δωm,m+1
y = c0 Ib

€ 

Ib,th1 =
ωs

a0 − b0 + 2km c0
 => 

€ 

Ib,th2 =
ωs

a0 − b0 − 2km c0

  If                , then                      . The beam is stable from zero 
intensity to            . Then it is unstable between             and 
(mode-coupling at             ). Finally, it is stable again above   
(mode-decoupling at            ). This case is depicted in the next figure 

€ 

Ib,th2 > 0

€ 

Ib,th2 > Ib,th1

€ 

Ib,th1

€ 

Ib,th1

€ 

Ib,th2

€ 

Ib,th1

€ 

Ib,th2

€ 

Ib,th2
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!
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  This corresponds to the case of a “long bunch” (with respect to the 
impedance:                      => See next slide), whose spectra of modes 
0 and –1 peak at low frequencies. Both modes couple to the 
inductive part of the coupling impedance, and therefore are shifted 
in the same direction. Moreover, their coupling to the resistive part 
of the coupling impedance is weak. As a consequence, when the 
two modes merge, they cannot develop a strong instability and are 
pulled apart as intensity increases. Modes of higher order can 
couple, but higher-order modes are more difficult to drive than 
lower-order ones and therefore the intensity threshold is expected 
to be higher  

€ 

τ b >> 0.5 / f r
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!

“Long-bunch” regime:  

€ 

τ b >> 0.5 / f r
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!
€ 

τ b = 0.5 / fr
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!

!
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  In the following, one will consider for our model the mode-coupling 
between the two most critical head-tail modes (m and m+1) 
overlapping the peak of the negative resistive impedance. In this 
case there will never be mode-decoupling (            ), and the 
threshold for mode-coupling is obtained at the intensity 

€ 

Ib,th2 < 0

€ 

Ib,th1

!!

! 

I
b

€ 

Ib,th1

€ 

Ib,th1
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  Below the intensity threshold, the real and imaginary parts of the 
coherent frequencies are given by 

€ 

Re ωc
±( ) =ωy0 + m +1/2( ) ωs + Ib a0 + b0( ) /2

±
1
2

ωs + b0 −a0( ) Ib[ ] 2 −4 km2 c02 Ib2

€ 

Im ωc
±( ) = 0

  Above the intensity threshold, the real and imaginary parts of the 
coherent frequencies are given by 

€ 

Re ωc
±( ) =ωy0 + m +1/2( ) ωs + Ib a0 + b0( ) /2

€ 

Im ωc
±( ) = ±

1
2

4 km
2 c0

2 Ib
2 − ωs + b0 −a0( ) Ib[ ] 2
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  The instability rise-times are given by                                       , 

 which gives, for the unstable mode 

 where 

€ 

τ ± =
− 1

Im ωc
±( )

€ 

τ− = Ts ×
1

π α −1( ) α q +1( )

€ 

q =
2km c0 + b0 − a0
2km c0 − b0 + a0

€ 

α =
Ib
Ib,th1

~ 1 for long bunches 
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  The intensity threshold can be found from the previous equation 

  It is given by 

  In the case of a long bunch (see figure) 

 => 

€ 

Im ωc
±( ) = ±

1
2

4 km
2 c0

2 Ib
2 − ωs + b0 −a0( ) Ib[ ] 2

€ 

4 km
2 c0

2 Ib,th
2 = ωs + b0 −a0( ) Ib[ ] 2

€ 

b0 ≈ a0 ≈ 0

€ 

Ib,th ≈
ωs

2 km c0
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  This leads to 

 which can be re-written 

 using 

€ 

Nb,th =
4π 3 fs Qy0 E τ b

2

ec
×

fr
Zy

× 1+
fξ y
f r

 

 
 

 

 
 

€ 

Nb,th =
8πQy0 η εl

eβ 2 c
×

f r
Zy

× 1+
fξ y
f r

 

 
 

 

 
 

€ 

fs = η × Δp / p0( )max / π τ b( )

€ 

εl = β 2E τ b Δp / p0( )maxπ /2 ~ Same result as  
for coasting beams! 
(within a factor ~ 2) 
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  Furthermore, when                             , and in the case of a long 
bunch   

€ 

α =
Ib
Ib,th1

>>1

€ 

τ− ≈
Ts Nb,th

π Nb

As                      => The instability rise-time becomes independent 
of synchrotron motion as could be anticipated (as the instability 
rise-time is much faster than synchrotron period)       

€ 

Nb,th ∝
1
Ts
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TMCI (27/40) 
  This can be checked with the MOSES code, which is a program 

computing the coherent bunched-beam mode 

  Below is a comparison between MOSES code and the HEADTAIL 
code, which is a code simulating single-bunch phenomena, in the 
case of a LHC-type single bunch at SPS injection  

Courtesy of B. Salvant 
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=> 

BB resonator impedance MOSES 
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  General picture (for 0 chromaticity) 

Infinite rise-time 

Nonlinear 

Linear 
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  PS measurements near transition 

Σ, ΔR, ΔV signals 

Time (10 ns/div) ~ 700 MHz 
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  SPS measurements at injection => See also the Movie for the case 

of a CERN SPS LHC-type bunch (under Windows!) 
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1st trace (in red) = turn 2 Last trace = turn 150 Every turn shown 

Head Tail 

⇒ Travelling-wave pattern along the bunch  
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  Ef fec t o f f l a t 
chamber (in the 
case of the SPS) 

Courtesy of B. Salvant 
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  Effect of linear coupling between the transverse planes in the case 
of an asymmetric (flat) chamber 

  => Using the same formalism as before, i.e. considering the case 
where 2 adjacent head-tail modes (m and m+1) undergo a coupled 
motion, the new system to solve is 

 (near                         )  

€ 

ωc −ωx,m −Δωm,m +1
x −

ˆ K 0 l( ) R2Ω0
2

2 ωx0

0

− Δωm +1,m
x ωc −ωx,m +1 0 −

ˆ K 0 l( ) R2Ω0
2

2 ωx0

−
ˆ K 0 − l( ) R2Ω0

2

2 ωy0

0 ωc −ωy,m −Δωm,m +1
y

0 −
ˆ K 0 − l( ) R2Ω0

2

2 ωy0

− Δωm +1,m
y ωc −ωy,m +1

=0

Same notation  
as when it was discus-

sed with coasting  
beams 

€ 

Qx − Qy = l
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with 

€ 

ωx,m =ωx0 + mωs +Δωm,m
x

€ 

ωy,m =ωy0 + lΩ0 + mωs +Δωm,m
y

This leads to a 4th order equation, which can be written 

€ 

ωc −ωx,m( ) ωc −ωx,m +1( ) + Δωm,m +1
x( ) 2[ ] ×

ωc −ωy,m( ) ωc −ωy,m +1( ) + Δωm,m +1
y( )

2[ ] =
ˆ K 0 l( )

2
R4 Ω0

4

4 ωx 0ωy0

×

ωc −ωx,m( ) ωc −ωy,m( ) + ωc −ωx,m +1( ) ωc −ωy,m +1( )

−
ˆ K 0 l( )

2
R4 Ω0

4

4 ωx0ωy 0

−2 Δωm,m +1
x Δωm,m +1

y
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This equation can be solved on the resonance (using here the 
approximation                  ) 

€ 

km =1

€ 

Qx0 +
1
2Ω0

Δωm,m
x +Δωm+1,m+1

x( ) = Qy0 + l +
1
2Ω0

Δωm,m
y +Δωm+1,m+1

y( )

A necessary condition for stability is given by 

€ 

Δωm,m+1
x +Δωm,m+1

y ≤
1
2
2ωs +Δωm+1,m+1

x +Δωm+1,m+1
y −Δωm,m

x −Δωm,m
y

If the previous equation is fulfilled, then it is possible to stabilise the 
beam by linear coupling. Beam stability is obtained above a certain 
threshold for the coupling strength, whose value is given by 
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€ 

ˆ K 0 l( ) ≥
2 Qx0 Qy 0

R2Ω0

×
1
2
Δωm,m

x − ωs − Δωm +1,m +1
x( )  Δωm,m +1

x 

  
 

  

1/ 2

×
1
2
Δωm,m

y − ωs − Δωm +1,m +1
y( ) ± Δωm,m +1

y 

  
 

  

1/ 2

Consider for instance the case where                 ,                 and 
The necessary condition for stability becomes  

€ 

ξx = ξy

€ 

Qx = Qy

€ 

Zy =λ Zx

€ 

Δωm,m+1
y ≤

1
2

′ ω s +Δωm+1,m+1
y −Δωm,m

y
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This is the one-dimensional vertical stability criterion with the angular 
synchrotron frequency            replaced by  

€ 

ωs

€ 

′ ω s =ωs ×
2λ
λ +1

If                    => A factor 2 can be gained on the TMCI intensity threshold           

€ 

λ >>1

If                  => A factor 4/3 (i.e. 33%) can be gained on the TMCI intensity 
threshold           

€ 

λ = 2
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TMCI (39/40) 

The last case was checked with the HEADTAIL code and a good 
agreement was found  

  Round chamber 

  Flat chamber 

⇒ The intensity threshold is increased in a flat chamber by 
 - The vertical Yokoya factor in the y-plane 
 - Slightly more than the horizontal Yokoya factor in the x-plane (it 

is not suppressed! and the effect of the detuning impedance, if any, 
seems small and in the plane of higher threshold) 

y-Yokoya factor 

x-Yokoya factor 
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TMCI (40/40) 

=> The vertical intensity threshold is increased from ~ 3.3E10 p/b   
to ~ 4.5E10 p/b , i.e. an increase of 36%, in good agreement with 
a previous theoretical prediction of 33% 

WITHOUT LINEAR COUPLING WITH LINEAR COUPLING 
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Transverse coupled-bunch instability in time domain (1/11) 

  The transverse coupled-bunch instability in circular machines is 
usually discussed using Sacherer’s formula in the frequency domain 

  Due to the periodicity of the machine, it can be derived for any wake-
field in the case of equi-populated and equi-spaced bunches 

  This formula takes into account the wake-field from all the preceding 
bunches and from all the previous turns. Furthermore, the intra-
bunch motion is also taken into account. This approach is certainly 
still valid when the bunch train is much longer than the gap and for 
long-range wakes. However, when the gap is much larger than the 
train only a rough estimate can be expected 

  In this case it is better to make a time-domain analysis, which is done 
in the following 

  2 formulae will be proposed, the first for the case of the resistive-wall 
impedance with (or without) inductive bypass (i.e. taking into 
account the 1st low-frequency regime, which is of great importance 
for instance for the LHC collimators), and the second for the case of 
a resonator impedance   
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  In the case of the resistive-wall impedance, the equation of motion 
for the bunch    (at azimuthal coordinate    ) submitted to the force 
exerted by the preceding bunch        (at azimuthal position                  ) 
is given by, assuming first only the 2nd frequency regime (i.e. the 
classical thick wall regime, and considering macroparticle bunches  
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Transverse coupled-bunch instability in time domain (2/11) 

It is not defined 
with a – here! 
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  In the presence of inductive bypass, an approximate formula for the 
wake field is given by (A. Koschik, 2003)  
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Transverse coupled-bunch instability in time domain (3/11) 
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  Summing over all the bunches and all the previous revolutions 
yields 
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Transverse coupled-bunch instability in time domain (4/11) 
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  Here,                               = transverse position of bunch 

     

             = distance between bunch       and                  
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  This leads to an eigenvalue problem, which can then be solved 
numerically: from the imaginary part of the eigenvalues the 
instability rise-time can be computed  
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Transverse coupled-bunch instability in time domain (5/11) 
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Transverse coupled-bunch instability in time domain (6/11) 
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  In the case of a resonator impedance, the equation of motion for the 
bunch    (at azimuthal coordinate    ) submitted to the force exerted 
by the preceding bunch       (at azimuthal position            ) is given by 
(considering macroparticle bunches)   
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Transverse coupled-bunch instability in time domain (7/11) 
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  Summing over all the bunches and all the previous revolutions yields 

€ 

d2xl s( )
ds2

+
Qx0

R
 

 
 

 

 
 
2

xl s( ) = kR xk s( )
k=1

M

∑ ×

χ l−k−1( ) e
j Q
R
zkm e

−
α
c
zkm sin ω R

c
zkm

 

  
 

  m= 0

∞

∑

+ χ k− l( ) e
j Q
R
zkm e

−
α
c
zkm sin ω R

c
zkm

 

  
 

  m=1

∞

∑

 

 

 
 

 

 
 

 

 

 
 

 

 
 

with 

€ 

kR =
1

2π R
×
Nb e

2 F ωR
2 Rx

p c QR ω R

€ 

ω R =ωR 1− 1
4QR

2

€ 

α =
ωR

2QR

Transverse coupled-bunch instability in time domain (8/11) 
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  This leads to an eigenvalue problem, which can then be solved 
numerically: from the imaginary part of the eigenvalues the 
instability rise-time can be computed  
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Transverse coupled-bunch instability in time domain (9/11) 
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General picture in the case of equi-populated equi-spaced bunches 

M = 8 bunches ⇒  
8 modes n (0 to 7) 

possible 

Reminder: 2 possible 
modes with 2 bunches 
(in phase or out of 
phase)  

Bunch treated as a 
Macro-Particle 

F. Sacherer 

Transverse coupled-bunch instability in time domain (10/11) 



Elias Métral, USPAS2009 course, Albuquerque, USA, June 22-26, 2009                                                                                                                                                                /112 112 

Transverse coupled-bunch instability in time domain (11/11) 

=> See the Movie for the case of a CERN SPS batch of 72 bunches 
(under Windows!) 


