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Program of the day

Space charge in the longitudinal plane

Equations of motion in the longitudinal plane
— Stationary bucket
— Accelerating bucket

Synchrotron tune shift due to space charge
Energy loss (single pass, multi pass)

Vlasov equation:

— Stationary distributions without collective terms (linear and nonlinear
matching)
— Stationary distributions with collective terms (potential well distortion)
* Haissinski equation
. Szr}_(t:hronous phase shift, bunch lengthening or shortening, synchrotron tune
sni
— Non-stationary solutions: perturbative approach

* Bunched beams (azimuthal and radial modes for low beam intensities, mode
coupling, turbulent bunch lengthening)

e Coasting beams



@ Some references Y

(reading recommended)

* Yesterday’s lecture on Space Charge, Wake Fields
and Impedances (E. Métral)

* A. Chao, “Physics of collective beam instabilities
in high energy accelerators”
— Chapter 1, Introduction, pages 20-27

— Chapter 2, Wake fields and impedances, pages
117-126

— Chapter 6, Perturbation formalism, pages 273-332,
361-363

— Chapter 5, Landau damping, pages 251-263
— Chapter 4, Macroparticle models, pages 162-172
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Space charge

We do the calculation for a ring-
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Space charge

e All dependencies on s are actually on s-fct
* Therefore d/dt =-fc d/ds
* We carry out the integrals in the equation obtained and take the limit for As->0
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Space charge

 We have found the space charge longitudinal electric field for a cylindrically
symmetric ring shaped distribution

* Let’s assume now that we have a beam with a radial distribution n(r)

 Then for the linearity of Maxwell’s equations, we can calculate its longitudinal
space charge electric field as the superposition of the contributions given by
the various rings composing the actual distribution

/ 2mrn(r)dr =1
0




)

Eg(r,s — PBet) =

Space charge

b b
—ﬁ)\’(s — fBet) |log T /T 2mr'n(r'") log %dr’

« Longitudinal space charge has the following interesting dependencies:

It decreases with energy like y2. Therefore it vanishes in the ultrarelativistic limit

It is proportional to the opposite of the derivative of the line density —\" . This can be
understood intuitively because it must be directed from a region with higher charge
density to a region with lower charge density (i.e. it pushes with the opposite of the
gradient of the line charge)

Space charge would then spread out charge bumps. However, remember that only
below transition energy, accelerated particles go faster and space charge has this
smoothing action. Above transition, accelerated particles take a longer time to go
around the accelerator and density peaks can be enhanced. This is the origin of the
so-called negative mass instability. Momentum spread (unbunched beams) or
synchrotron motion (bunched beams) can usually stabilize this effect.



Prove the formula on the previous page (Slide 8)

Calculate the radial distribution of E, for a bunch with a uniform distribution
for r<a and with parabolic radial distribution n(r)=k(a?-r?) for r<a

Verify that the fields on Slide 5 and 6 (E,, B, E) do not satisfy Maxwell’s

equations, unless a correction term is taken into account. Calculate the
leading term for the correction and show that it can be neglected as long as

the bunch is much longer than b/y

Compare the strength of transverse and longitudinal space charge forces, and
find under which condition the transverse one is dominating.

Space charge: exercises
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Equations of longitudinal dynamics

Ob
e To describe the motion of Server

particles in the longitudinal phase (impedance)
space, we will use the pair (z,0),
which represent the arrival delay
of the particle at an observation
point (multiplied by the particle
velocity, z=-pct) and its relative
momentum offset, respectively,
with respect to the synchronous
particle.

* The pair is s-dependent, i.e. it is
defined with respect to a chosen
observation point in the
accelerator, but this is not critical
for the longitudinal plane,
because longitudinal motion is
generally much slower than the
revolution time

* (z,0)=(0,0) for the synchronous
particle

10
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Equations of longitudinal dynamics =

(c) 5
* The synchronous particle has !
zero momentum offset and /A //jﬁ ﬁ .,
always takes T, to go around, i.e. U \T\j U
is always observed with z=0.
e Particles with positive z arrive (d) 8

-

earlier at the observer (negative
delay t), those with negative z
arrive later (positive time delay )

* Bunched beams: below transition
particles are focused back by (e)
deceleration. Opposite above

transition. m
N

* Coasting beams: below transition ——)
particles with positive
momentum offset shear toward
positive z (absence of focusing).
Opposite above transition
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@m Equations of longitudinal dynamics y

T:g ¥:a5:5]{ D(S)ds
Bc Co c P
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The difference in revolution time between a generic particle and the synchronous
particle, that is its delay in arrival time at a point, can be easily related to its
momentum offset



Equations of longitudinal dynamics

Reminder of vocabulary and meaning of symbols:

a is the momentum compaction factor

1 is the slippage factor

C is the mean circumference of the accelerator C=2nR 1

Y, is the y transition (corresponding to the transition energy) & = ?
t

Remember that y is a property of the beam, whereas v, is a property

of the machine. ) depends on both, but in the limit of very high

energies, it tends to o, and therefore depends only on the lattice.

1 1 1 (<0 if v <y
g T >0 iy >y
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Energy change per turn

@m Equations of longitudinal dynamics

dz

dt

= —Bocno

Actually a kick that the beam receives

KAEcavz'ty(Z) eV (z)] y at the cavity location(s)

(AEimpedance (Z) — 6V;mep (Z) \|

AF.(2) = eCEy(2)]

)

Actually a kick that the beam receives

at the impedance location(s)

Actually a force felt by the beam

constantly over the revolution

AFEot = e[Vean(2) + Vimp(2) + CEge(2)] = eVio(2)

Ap dp  eVior(2)  eViot(2)

TO -~ dt N BocTo C

do  eViot(2)

% B poC
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Equations of longitudinal dynamics =

dz
—_— = — 5

do  eV(z)
dt p()C

V(z) is the sum of the external voltage from the rf systems and self-induced from space
charge and impedances. The rf component is 0 when z=0 for a stationary bucket.
Above transition, the regime is negative-mass due to n>0: the particle will move to
lower z for positive momentum deviation, and vice versa.

We are interested in the particle motion only in the stable regions, i.e. where particle
motion is confined around a stable point. These regions are called rf buckets and are
determined by the phase of the rf with the motion of the synchronous particle
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Equations of longitudinal dynamics

Example: V(z) is only external due to the main rf system and has a sinusoidal
waveform tuned on harmonic number h (means that the rf frequency w is h times
the revolution frequency w,). Case of stationary bucket

5 -
V(2) = V., sin (EZ 4 (I)s> with @, — { 0 above transition

7 below transition

eV
Stable synchr. Particle
for n<0

16



@m Equations of longitudinal dynamics

If V(z) is can be derived from a scalar potential U(z), the system is Hamiltonian and
we can also express its Hamiltonian function.

dU 1
Vi(z) = —— :>P{ = —5607752 | pOeCU(zﬂ
. OH 0z 06 o
0o 0z 06
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Equations of longitudinal dynamics

For an accelerating bucket, the bunch needs to be synchronized around a phase
different from O or m, which can guarantee a desired rate of momentum (energy)
increase per turn. Obviously, the rf system can only accelerate up to an energy gain
per turn [eV] that equals its maximum voltage [V] (ideally, because the bucket area

shrinks to zero when V_=AE__).

sind, = = [Ap‘)] _ BBy ) S AR [eV]

eV | 1o eV

eV

M, M, Stable synchr. Particle

p P, for n<0
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Equations of longitudinal dynamics

)

For an accelerating bucket, we redefine the pair of coordinates we use to describe
the system, in such a way that they keep being both zero for the synchronous particle
The acceleration rate does not need to be constant in time....

Ap=p—po(t) and ¢ =2z — %@s(t)
e G Ap
< % e n(t)ﬁ(t)cpo(t)
idp _ eV [ (B -
@ C [Sll’l ( B +<I>8(t)) SmCIDS(t)]

Usually @ is not constant at the beginning and end of an accelerating ramp, to make the
curve B(t) smoother (it is made linear piece-wise). Also when crossing transition, there
might be a y,-jump scheme in place to minimize the time the beam spends on transition.

The above equations can be derived by a slowly time varying Hamiltonian H(t).
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Equations of longitudinal dynamics 7~

J
D

As the synchronous phase
gets closer to 90° the
area of stable motion
(closed trajectories) gets
smaller. These areas are
often called "BUCKET".

The number of circulating
buckets is equal to “h".

The phase extension of
the bucket is maximum for
0, =180° (or 0°) which
correspond to no
acceleration . The RF
acceptance increases with
the RF voltage.

20
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Equations of longitudinal dynamics =

* Usually p,, @, B, v, etc. vary on a time scale that is long with respect to the
time the synchrotron motion, described in the longitudinal phase space
(C, Ap), evolves. Yet another time scale in the beam particle dynamics
inside an accelerator:
— Transverse motion has a periodicity of fractions of a turn

— Longitudinal motion has typically a periodicity of ~100 turns (only when
crossing transition longitudinal motion becomes much slower)

— Acceleration takes usually several hundreds of thousands of turns.

* Even if the beam is usually accelerated at the expense of one (the main) rf
system alone, the longitudinal dynamics can make use of more than one
rf-system. Additional rf systems are usually programmed to be ‘slaves’ of
the main system, i.e. they are made to have their 0 or t phase
correspondingly to the synchronous phase, which is solely determined by
the main rf.

— For example the CERN-PSB accelerates the beam over the full length of its
cycle and makes use of the 2 rf systems h=1 and h=2. In some configurations,
h=1 is the main rf system and h=2 is used for flattening the bunch against
space charge. In some other configurations, h=2 is the main system and h=1 is
used to reduce the bunch spacing and synchronize the transfer into the CERN-
PS waiting buckets.
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Equations of longitudinal dynamics

Some times the bunch is made to sit in an accelerating bucket only to compensate
for external losses

* in a lepton storage ring, to compensate for synchrotron radiation losses

* in general, a bunch in a stationary bucket can move to a synchronous phase
different from O or mw in order to compensate for impedance losses (see further)

( dC‘
% = — 665

do eV, | . (hC :
N . (I)s — (I)s
\ 7 — {sm ( ) R ) Sin ]

1 eV, h¢ eV, sin @
H = —ZBcnd? i)
SR ( R) e ¢
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Synchrotron tune

From linearization of the rf force around C=0, the synchrotron motion is reduced to a
harmonic oscillator with a characteristic oscillation frequency (or tune, if divided by
the beam mean revolution frequency)

a (ethnﬂc

COS <I>S> (=0

poCR
\ ~ J
w3
N

W Vin IMV|hn cos @
QS S S 2

o 2132 Eo[MeV]
-

Note that : ncos®,; = [ncos®s| >0



@m Synchrotron tune shift due Y

to space charge

We consider the case of a parabolic bunch inside a stationary single rf bucket

z = —npPco ;
g = 0.33 4 log —
. eV . [(hz e’g\ (2) ¢
0 =——=sin| — | —
poC R 2me0Y%Po A
L A(2)
(3N,

. (22 — zz) if |z| <2
Az) = 4

0 if |z| > 2
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@m Synchrotron tune shift due y

to space charge

The rf force has to be linearized around z=0, while the space charge force is already
linear with the chosen bunch line density.

m “gN,
- (!77\6‘/ hpe | 3eg bnﬁC)Z:O

poCR Amegy2 2o

\ J
Y
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Synchrotron tune shift due
to space charge

)

 Remarkably, the space charge induced synchrotron tune
shift depends on

— Number of particles in the bunch N (linear)

— Beam energy
* Explicit inverse quadratic dependence on 3 and y

* There is another energy dependence in 7). In particular the shift
changes sign below and above transition. The tune shift is negative
below transition (n<0), where space charge is defocusing. It is positive
above transition (n>0), where space charge adds up to the external
voltage and contributes with an extra focusing.

* There is another inverse dependence on y in E,,.
— Machine radius (quadratic)

— Bunch length (inverse cubic)

* Attention must be paid here to the fact that the bunch length itself
depends upon the strength of space charge....



General equations Y
of longitudinal motion

* First of all we would like to write the full equations of the
longitudinal dynamics by singling out all the different contributions
(external voltage, space charge and wake field)

* We consider for the moment only wake fields decaying over one
turn, or in the distance between two subsequent bunches of a train

~_ /N /\
N \_/ VO.S- since Wé(z)zo for z>0

fW/O(z-z')}\,(z')dz’ Mz') Fw (Z) — _%/ )\(z’)Wé(z . Z/)dZ/ _
2

%

———/ VWi (z — 2")dz2’

Wi A)(2)
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General equations y

of longitudinal motion

Let’s limit ourselves for now to the case of a stationary bucket.

However, it should be noted that in the case of accelerating bucket, both
the space charge term and the wake field term will be included into the
momentum equation in a similar fashion, simply exchanging z with C,
because both space charge fields and wake fields move with the bunch!

(2= —nPBch
< . V 2 )\/ 2 o0
5= € rf(z) - €Jg gZ) . € / )\(z’)Wé(z o Z/)dZ/
\ Cpo 2meov*po . Cpo J_oo
\ J
Y
External rf \_ J Wake fields

Y

Space charge

Ex. Write the general Hamiltonian of this system, and specify it to the
case of resistive wall and two in-phase rf systems on h=1 and h=3
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Space charge impedance

Now we will justify that we can always drop the space charge term from
the general equations, because it can be included in the wake field
formalism through an ad-hoc defined “space charge impedance”

Therefore, we will be able to retain the only wake field term in the
equations of the longitudinal dynamics.

_gN(x)C

I8 = (W5 < M) = 52

6072

W5e(2) =

oo

because / MNZYWy(z = 2)dz" = / N(ZYWo(z — 2")d2!

— 0 — 0

LW w gR
sc _ I ‘VSC _
0 (Ld) c [ 0 (Z)] o2 6()’)/2
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Space charge impedance

Z3¢(w)  igR N Z3¢(n)  igRwy
w o €c3y? n €ycy?
W
n=—
Wo

* Longitudinal space charge can be easily included in the frame of the impedances
through a newly defined “space charge impedance”

* The space charge impedance is purely reactive and exhibits a linear dependence
on frequency. This is an approximation valid only in a range of frequencies well
below the cut-off frequency of the beam pipe

e Itisintuitive that the space charge impedance is proportional to the length of the
accelerator and inversely proportional to the square of the beam energy.

* |t will be shown in the following that, as purely imaginary, the space charge
impedance does not contribute to the bunch energy loss. This is physically
consistent with space charge being an internal force, which cannot determine a net
energy loss over the full bunch (it can only happen that the energy lost through
space charge by a part of the bunch, is transferred to another part of it). However,
unlike in the transverse plane, here it can drive an instability (negative mass)
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Energy loss of a bunch =
(2= —nBcs
< §— emf(z) - e’ /OO )\(z')W’(z—z')dz’
L B Cpo Cpo J-oo ’

 We can write the equations in the above form without losing generality

 We are ready to calculate the energy loss due to the wakes
— First the energy loss suffered by a particle at the z coordinate inside a bunch

— Second, the energy loss suffered by the whole bunch

AE(z) = —e? /OO AW (z — 2")dz2’

— OO

AFE = /_Z AE(2)\(2)dz = —e* /OO A(2)dz /OO MW (2 — 2"d2

— OO0 — OO0
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Energy loss of a bunch

Even if single particles within the bunch can have a net energy loss or gain (sign of
AE(z) not defined), as they can acquire more energy left behind by the preceding
part of the bunch than what they lose on creating their own wake, the whole bunch
can obviously only lose energy interacting with an external passive structure (AE<O)

The value W’,(0) accounts for the energy loss of the source of the wake
— It can be seen by calculating the energy loss of a very short bunch (see below)

However, the final expression of the energy loss will be more complex because, as said above,
part of the energy lost by a part of the bunch can be recovered by a following part of the bunch

Wo(z = 2") = Wy(0)

= AE ~ —e*W/(0) [/% )\(z)dz] 2 = —e*W{(0)N;

*  W’,(0) quantifies the energy lost by the almost point-like (in z) source g=N,e on

creating its own wake

* We assumed W’(z) to be a continuous function in z, and thus also in z=0. This is true

only in the non-ultrarelativistic case. See next page for the ultrarelativistic case.
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Energy loss of a bunch =

)

* Inthe ultrarelativistic case, since there cannot be any wake field in front of
the bunch itself, when the bunch becomes very short the wake field tends
to its limit for O

Wiz =) = Wi(07) = AB~ ~Wi07) [ Az [ A:)d =
R z
0 2 7\ 2
= —e2W,(07) [—/ udu] _ Wy(07)
Ny 2

e Thisresultis the beam-loading theorem

* The factor %2 comes from the fact that, because of the ultrarelativistic assumption,
even an ultra-short bunch will only see in the average half of its charge.

* To keep the meaning of W,’(0) unchanged,
we can define:

( W{(2) if 2<0

Wi(z) =4 LWE07) if 2=0

. 0 it 2>0
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Energy loss of a bunch

* Now we go back to the energy loss of a bunch and try to
express it as a function of the longitudinal impedance:

— —¢? 2\ W (z z:—é V() Mw) ZH (w)dw
AB = ¢ [ A=Wz =~ [ (@A) (w)a
2
AE = —— [ |A(w)[*Re[Z] (w)]dw
Y R

The energy loss only depends on the overlap between the real part of the
longitudinal impedance and the bunch spectrum. Therefore, space charge (as well
as any other purely reactive impedance) does not cause energy loss

This result is only valid for the case of wake field decaying over one turn (broad-
band impedance)
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Energy loss of a bunch

 Exercises: calculate for a Gaussian bunch

1. The energy loss per unit length due to a resistive pipe of radius
b and conductivity o

2. The energy loss due to a broad band resonator (when needed
make approximations on bunch length and resonator width)

Zy(w) 2 Zy. . AE N2e2c  [Z, 3
— 2[1 — i = — = ——b T =
L V o Zge amp @17 1~ issn@)] = 1202V 20 (4)

( R €2N2 5303 50
AE = ——2__b if 0, > —
R 2/mQ*w? ( o ) HoZ Wr

2 (w) = . = 3
o 1+iQ( L -2 R.e2N2w Be
’ Wy W AE = - b T if 0, €« —
\ 2Q Wy

35



)

Energy loss of a bunch

If the wake field decays very slowly and still has a significant amplitude by
the time the bunch takes to go around the machine, bunch and wake field

will interact on several passages

In this case we take this into account into the calculation (assuming that the
bunch distribution is basically stationary, i.e. does not significantly change
from turn to turn -> A(z) periodic with period C).

AE = —62/ )\(z)dz/ dz'\(2") Z Wi (kC + z — 2')dz’
R r

k=—o0

We need to make use of the following general property of Fourier transforms

W 27Tpc)
C

F(z) —— F (2) = 3 F(kC) = = S A
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Energy loss of a bunch =

)

 From the Eq. on the previous page, we derive a closed expression for the
multi-turn energy loss of a bunch (can be also multi bunch, if we can
approximate the finite summation on the number of bunches, M, with an

infinite summation

oo

c || ipwo(z — 2')
ZWOkC'—i—z—z - ZZO pwo) exp[ » ]

k=—o0 p=—00

B PRI — [ —ipwoz ) ipwoz’ )
AFE = v p_zoo Z (pwo) /3CE A(z) exp ( . ) dz/%)\(z ) exp ( . ) dz
N J \ J
Y Y
Apwo) A" (pwo)
AB = =20 3 15 (o) PRel 2] (pn)
G PwYo 0 \PwWo

p=—00
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Energy loss of a bunch

Exercises:

1.

2.

Discuss when the multi-turn formula for the energy loss
reduces to that for single pass

Using the single pass and multi-turn results, discuss the multi-
bunch case for different filling patterns of the machine
a) M bunches uniformly distributed (PSB, M=h=1 or M=h=2)

b) M bunches separated by C/h, with h>>M (long gap) (SPS, M=72,
h=4620)
c) M bunches separated by C/h with h=M (short gap) (PS, M=6, h=7)

Wo i —>/Oodw

p=—00
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V ((z): use of second harmonic

(2= —nBcs
. eVie(2) e? 0

= = MWW (z — 2)d2
\ Cp() Cp() . ( ) O( )

General equations of longitudinal motion for a bunch in a stationary
bucket

V ((z) depends on the specific rf system and can contain several
harmonics, determining eventually, together with the wake fields, the
shape of the bunch

An important example is when V (z) has the contribution of only two
harmonics, h, and h,=2h,. Assuming the lower harmonic as the main
harmonic, the second harmonic can lengthen or shorten the bunch (BL or
BS mode) according to its relative phase to the first harmonic
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V ((z): use of second harmonic 7~

)

* In BS mode focusing must be strengthened, so the two harmonics need to be in
phase

* In BL mode, focusing is weakened and the two harmonics are out of phase
* Flattening of the bunch in the center can be optimized by making the slopes of

the two forces around the origin equal and opposite in sign (equivalently,
requiring first and second derivatives of the force to be 0 in the origin)

BL mode — &0 =7

Vie(2) = sgn(n) - < . oh
BS mode — ®12 =0 V.1 sin (%) — V.9 sin ( f;z) BL
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Hamiltonian of the system

We write the general Hamiltonian of the system, using a general
potential for the rf force, U(z), which can be specified for each case

1
H=—- 052—|——U —|—— dz”/ Wi(z27 — 2")d7

2775 CpO ( ) CpO O )
Examples
U(z) = VW;LR cos (%) - sgn(n)

. leR hlz 1 2h1z
U(z) = e [cos( R ) + 4COS( = )] sgn(n)
mh

U(z) = 22 - sgn(i)

2R
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SO0 ==
oShvhrO®=NMRO®

Hamiltonian of the system =

 Examples of U(z) for the case of single harmonic and double harmonic

with different voltage ratios (r=0.5 and a case r>0.5)

 The case r=0.5 shows perfect flattening, but some times a ratio r>0.5 is

used in order to increase the bunching factor further and reduce the
effect of transverse space charge.

shape of the potential

" Primary cavity on |y
Doub% RF sgllstem—

-2-15-1-050 051 15 2
phi




Vlasov equation

(a) (b)

Let’s consider a phase space distribution of particles such that
— There are no mechanisms of generation/loss
— Single particles evolve following a Hamiltonian law of motion
This distribution behaves like an uncompressible fluid, i.e. has the

property that whatever area occupied by a fraction of the particles is
conserved during the evolution (Hamiltonian flow)

This entails that the total time derivative of the distribution is zero



Vlasov equation i
’ (oo
< Lo
__0H
\ b= 5’(]

Y (q, p,t)area(ABCD) = v (q + ¢dt, p + pdt,t + dt)area(A'B'C'D’)

d
U(g,p,t) = (g + 4dt,p + pdt,t +dt) = %:0

i ey

e lotlo )
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@m Vlasov equation Y

y

z = —nlco
y . eV (2) e’ [

b= == MWW (2 — 2d2
\ CpO CpO e ( ) O( )

The beam (bunch) is described by a distribution function ¥(z,o,t),
solution of the Vlasov equation

* The stationary (equilibrium) solutions ¥,(z,6) can be easily found
because they must be functions of the Hamiltonian of the system

o OH | 0y OH _

“OH 02 ' "9H 95
w0(275):¢0(H) =

_OH 0o 0H  OH 9y OH

~ 95 OH 9= 02 0H 05

0



@AV Stationary solutions

General solution with wake fields

el (2)

1 2 ”
¢0 [—577ﬁ65 + Cpo —|‘C—po dZ /WO(Z —Z))\( )dZ]

General solution without wake fields

i |~ gndert + G2

Cpo

Distribution has to satisfy the normalization condition

/ Y(z,0)dzdd = Ny
3%2
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@m Stationary solutions, matching

(no wake fields)

Let’s use the linearized potential (bunch much shorter than the bucket)

Vh

U(2) = -2 - sn()

and we choose an exponential solution (double Gaussian)

1 /1 5 Vmehz?
n(210) = kv exp |~ ( Glalgea® + 2 )|

This corresponds to a simply Gaussian momentum distribution

b 2
/wo 2,0) dzocexp[ QHO\ancS ]

0-2 — HO
> nlBe

= Hy = |n|Bco




Stationary solutions, matching

%

(no wake fields)

And also Gaussian distribution in z

V..ehz?
Az) = /%w(z,(S)ch X exp (— 20RP0H0>

o _ CRpoHy _ CREP|lo3 _ R*n’o}

o ehV,  ehV, Q2

The extensions of line density and momentum distribution, quantified by their
rms values, are not independent, but related through the matching condition
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Stationary solutions, matching

)

(no wake fields)

A possible equilibrium solution for the short bunch is therefore

o(2,0) = —_ exp [—(’22 + & >]

270, 0§ 202 20%

* 0,and o5 must be determined through

— Lepton machine: Gaussian solution matches naturally the problem, because
the Gaussian distribution in momentum, as well as its rms value o, are fixed
by the equilibrium between radiation damping and quantum excitation. The
O, is then given by the matching condition

— Hadron machine: Gaussian distribution could be incorrect or inaccurate.
However, we usually know the longitudinal emittance (conserved through a
chain in absence of any, voluntary or not, blow up mechanism) and can

therefore determine o, and oy of a Gaussian solution from the emittance
(proportional to the product yo,0;5) and the matching condition

 The matching condition is true only for short bunches, the problem of
nonlinear matching will be considered later
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Stationary solutions, matching
(no wake fields)

For hadrons, some times an elliptical distribution in phase space could be
preferable, which corresponds to parabolic distributions in z and 0 (exercise 1)

Yo (H)

77@0(2, 5) — <

H
ki1 + o if |H| < |Ho|
Hy

ift [H| > |Ho|

d|n|R

A

QsZ

1

Exercise 2: prove that the
matching condition is satisfied
also for an elliptical distribution
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Stationary solutions,
nonlinear matching (no wake fields)

)

When the bunch occupies a vast area in the longitudinal phase space
(comparable to the bucket area), matching is more complex

The exponential solution has to be cut at the limits of the stability region in order
to give a possible stationary solution of Vlasov equation

B nBch? el (2)
)= hesp (=5 e (57 ) 0

] 1 in domain of stability
UH) = { 0 outside

The equation of the domain of stability is usually given by the equation H=H__,
with H__ being the Hamiltonian of the system at the first unstable fixed point(s).
Typically for hadrons, because lepton machines are designed with very large
buckets in order to improve the Touschek lifetime of the beam.



Stationary solutions,
nonlinear matching (no wake fields)

)

Let’s consider for instance the case of a long bunch inside a single harmonic
stationary bucket (e.g. the LHC beam at the injection plateau in the SPS))

Stationatry Bucket
2
1 eVm hZ
o H = —_-npcd” — sgn(n) L—cos{ &
1 ) ~ 2 om hpo R
N V,
\ r~§‘§~ 77N ¢ m
N T T | Hmaz| = [H(2maz, 0)| = h
3 ~— T A T™hpo
S TR
. L 0 ‘Zguwc‘ + A stablhty boundal‘y — |H(Z 6)| — ma:c
-7 Pha?e §

\/5,3,,” 1+COS(%) 1 eV, hz
2,0)dd =k / ex (—— 652) ex [ ™ cos (—)] do
/ Yo ( N V38 [Treos(B] p 2HO|77|5 p CpoHy R



Stationary solutions,
nonlinear matching (no wake fields)

%

If we know the bunch length, we can write the line density in closed form,
determine the two constants k and H, by using the conditions below and then
calculate the only possible rms momentum spread that solves the problem.

If we know the longitudinal emittance as an input, the nonlinear matching
requires expressing the momentum distribution, as well, and the problem
becomes more involved.

~ eV, hz 20) s Hy hz
— P2 | erf 1 e
o) = e | g eos (7 ) [ [hm e [ (%)

/ A z)dz = Ny — —/ 2 A2)dz
R Np Jx
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Stationary solutions, y

nonlinear matching (no wake fields)

In a double harmonic rf system the boundary of the stability is different

= if the ratio between the voltage is below 0.5, the origin of the longitudinal
phase space is still a stable point and the effect of the second harmonic is just
to flatten the separatrices around it

= If the ration is above 0.5, the origin becomes an unstable fixed point, but the
trajectories around it are still limited and the total stable area increases further.

r>0.5

r<o.5
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Stationary solutions,

unmatched case (no wake fields)

But what happens when the beam parameters do not fulfill the matching condition
(linear or nonlinear)? In other words, what happens if we inject a beam into a
machine with length and momentum spread not matched with the waiting bucket?

= No stationary solutions exist, the beam parameters at injection have to be
used as initial condition to solve the Vlasov equation in time varying regime

= The problem can also be solved using the envelope equation formalism (see
yesterday’s lecture from Elias).

= In the linear case: the beam will start rotating in phase space, at a frequency
that is twice the single particle synchrotron tune. This is called a “quadrupole
oscillation” and is undamped, i.e. it would in principle last forever.

= In the nonlinear case, the quadrupole oscillation dies out in time at the
expense of longitudinal emittance increase (dilution) caused by phase space
filamentation. Since particles at large amplitudes rotate at slower frequencies,
they will be left behind while the core is executing the oscillation at twice the
nominal synchrotron frequency. The beam will decohere and eventually occupy
a larger region, matching itself naturally to the bucket. In this case, there exists
an asymptotic solution, but again, not a stationary solution.

= Mismatching can be done on purpose, e.g. to have a fast bunch rotation or
longitudinal emittance blow-up



@m Stationary solutions with wake fields Y|

Potential well distortion

We study now the equilibrium bunch distribution in presence of wake fields.
We take the linear approximation for the rf force (quadratic potential)

1 /1 Q?Bc e?sgn(n) [*
2,0) =knexp |—— | =|n|fed? + =22 — / dz”/ Wi(z" — 2YA(2)dz'
n(20) = kv exp | - (Gnig + 272 - S [ g [y — )

From the momentum distribution: Hy = o3 |n|Be

Haissinski equation
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A Stationary solutions with wake fields
Potential well distortion

* The Haissinski equation is an implicit integral equation in the unknown A(z).

— Lepton machines: The momentum spread oy is given, and we can use the equation to
determine the line density alone, with the coefficient in front solely defined by the
normalization condition. Since the solution for the momentum distribution is Gaussian, this
type of solution is specially suited for this type of machines.

— Hadron machines: The longitudinal emittance is given. In this case a joint solution (A(z), O5)
must be sought such that the resulting pair (o,, 0;) satisfies the condition on the longitudinal
emittance.

* A way of solving Haissinski equation numerically consists in using successive
iterations. A first order perturbed A,(z) is calculated by plugging the unperturbed
Gaussian shape in the RHS of the equation, then A,(z) will be calculated by
plugging A,(z) in the RHS, and so on until the procedure converges.

* An analytical treatment of the problem can be made assuming that the wake
fields only produce a small deviation from the unperturbed solution
— The bunch shape stays Gaussian

— The center of the bunch moves from z=0 to z=z,, such that the associated synchronous

phase ®_=(hz,)/R ensures constant compensation for the energy loss caused by the real part
of the impedance

— The bunch length will change, such as to re-match the bunch to the distorted bucket. This
adjustment can produce shortening or lengthening with respect to the unperturbed
solution, according to whether the impedance produces more or less net focusing.
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Stationary solutions with wake fields y

Potential well distortion

@ —m—

04 - N=07x10"] |- [v=12x10%] -

(d)

Numerical solution of the Haissinski equation for the electron damping ring for
the SLAC linear collider

Bunch shape is Gaussian at low intensity

Distortion occurs as intensity increases. In particular, the distribution tends to
lean forward (z>0) in order to compensate with the rf for the parasitic loss due to

the impedance



A Stationary solutions with wake fields y

Potential well distortion

A I I IR N I ().':}_1IﬁT|llllellll1111_1
- -
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X = Z/Eoz

* Solution of the Haissinski equation for the two special cases:

— Reactive impedance (left plot), iSZ,. The parameter a is proportional to S/, so that a>0
means either above transition+capacitive impedance or below transition+inductive
impedance. In both cases the bunch shortens.

— Resistive impedance (right plot), SZ,. Below transition (a<0) the bunch moves backward, and
it moves forward above transition. In both cases the bunch takes power from the rf to
compensate for the energy loss.



Stationary solutions with wake fields
Potential well distortion

%

* For small deviation, we A\ (Z — 20)2
assume then that the /> (2) o exp | —
bunch distribution
stays Gaussian (ansatz)
 We can also expand in
Taylor series around
z=0 the wake field __
2
contribution to the > )\(Z) X exp [— 252, (klz + koz )]
Hamiltonian as it o

appears in the
Haissinski equation.

N.B. Rigorously speaking, these are still implicit equations, because k,=k,(o,) and
k,=k,(0,), but they are not functions of z, because the wake moves with the bunch



@ Stationary solutions with wake fields y

Potential well distortion

* Calculation of k, first

* This is the second order term in the Taylor expansion of the wake field
contribution to the Hamiltonian

62 © !/
kQ_—CEOﬂ%%.Q{@[/ dz/WOz — 2A(2")dz ]}9
[
dw 1

N2 N dy = — | _ \Mw)wlm ||w W
| W= /%M)CZ()% m/%A()I[ZOU]d

e2 1 =
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Stationary solutions with wake fields
Potential well distortion

)

* The sign of k, determines whether there is bunch lengthening or bunch
shortening (K,<0 => 0,>0,, and vice versa).

From the expression on the previous page, the sign of k, is jointly determined

by the sign of 1 and that of the integral, which in turn depends on the overlap
between the impedance and the bunch spectrum.

* For Gaussian bunch and space charge-type impedance —iSZ,w:

~wwm ”w w = — 0 w2~w w =
/%A()I 12 (w))d sz/ A(w)d

R
V218 Zyc3 N
= —V ZWSZOUiNb = — n SOC b
J-0

< 0 Dbelow transition
ko
> (0 above transition



@ Stationary solutions with wake fields y

Potential well distortion

* Calculation of k,

* Thisis the first order term in the Taylor expansion of the wake field
contribution to the Hamiltonian

62 d ? /! / /! / / /
-k = CEo o {dz [/_OO dz /%Wo(z — 2\ (2")dz ] }zzo
\ J
Y
Wi(=2"A(2")dz'
R

(=2 W\ (2)d2' = | Mw ”wd—w:i Mw)RelZl (w)]dw
[ Wa=ea = [ M@zw)5E = o [ MeRe(z) ()

e2 1 =

The bunch will move to the left (z,<0) below transition and to the right (z,>0) above transition



Stationary solutions with wake fields
Synchrotron tune shift

%

1 Be@?
H=-= co? — z + sgn(n / dz"/W 2" = 2\ (Z")dZ

We still rely on the second order term in z in the Taylor expansion of
the wake field contribution to the Hamiltonian

_ pe > enR? 1 [ - !

Exercise: how should the synchrotron tune move due to space charge ? Verify that with the
above formula it goes in the right direction and the formula on slide 22 is recovered 64



@m Stationary solutions with wake fields y

Generalization to multi-pass

All the formulae obtained so far to describe the potential well distortion can
be generalized in the multi-turn regime in a similar fashion as was done
for the energy loss!

(©.@)

Rule: flw)dw — wo Z S (pwo)
§R p=—00
b= O S Apwo)pwohnlZ) (o)
C2Eoﬁn0§ p=—o00 0
- I
k1 = C2p0770' Z (pwo) ReZ (pwo)]
AQs = — gl Z A pwo)pwolm[zll(p%)]
4(271') poQ

p=—0



Stationary solutions with wake fields

)

Potential well distortion

* Exercise: calculate center shift and bunch length of a bunch under the
action of:

1. A purely resistive impedance

SZ
Z(w) =7
2. A purely reactive impedance
SZO w
Sl 2% w
v <W) ! 4 wo

Another possibility to calculate the center shift from the Haissinski equation
imposing the condition:

)\/(Zo) =0
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Linearization of Vlasov equation

First, we need to change the system of coordinates

We define polar coordinates (r, @), such that the unperturbed Hamiltonian
can be written as a function of r alone, which translates into unperturbed
solutions of Vlasov equation of the type W,(r).

—rcosd 1
H = iwsr
77_565 = rsin®
Wsg

2

We will search for wave-like solutions of the Vlasov equation in the form
below

Since W,(r) is the solution of the unperturbed Vlasov equation, the potential
well distortion will be also included in the wave term (€2=0)

w(r, (I), t) = ¢0 (7“) + lbl (7“, (I)) exp (—’iﬂt)
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Linearization of Vlasov equation =

We also write the wake field term in the momentum equation directly
in a form that includes the multi-turn contribution to the force

2 oo
Fu(z,t) = —% /%)\(z’,t — KT)Wi(z — 2 — kC)dz'
Az, t) = Ao(2) + A1(2) exp(—i€dt)

62

Fu(z,t) = ~ & /;*R A1 (2")dz’ Zexp[—iﬂ(t — kTo)|Wi(z — 2" — kC)

2 (0. @)

Fu(z,t) = —% exp(—i€dt) Z exp (zQ%) /§R)\1(Z,)W6(Z — 2 — kC)d'

k=—oc0
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Linearization of Vlasov equation =

 We recast the wake field term in the momentum equation in a form
that contains an explicit dependence on the longitudinal impedance

i [exp (m%) (A1 W) (2 — 2)]

1

~

1 . z
To Z exp [z(pwo + Q)E] 1 (pwo + Q)Z(|)| (pwo +€2)

z=kC

p=—00
Fy(z,t) = —iexp(—z’Qt) Z exp [z'(pw +Q)E} A1 (pw —I—Q)Z”(pw + Q)
wlZ, CT, 0 o) Ao 0 (Pwo

p=—00
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@m Linearization of Vlasov equation

* Next step, we need to recast the Vlasov equation in the polar
coordinates previously defined in order to simplify its structure

o oYy w2 O oY
o 0%, Y oseas ety =0
\ J
Y
oL
o ooz 9pas oy
from & = 5,00 T a5 a0 SNy, Tresogs =

ws 0z nPc 09

00 0b Pl 00

ot 0P Po 00 N

0
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Linearization of Vlasov equation

We first substitute the ansatz on the previous slides for W(r,®,t), and
then we use the periodicity in the ® coordinate to expand both sides
of the equation in Fourier series

Next, we specify to the case of W,(r) being of water-bag type

O enc 1 diyy

0 .
Wi+ 0P cuSEOTO2 sin® dr
r cos P I
X Z exp |i(pwo + ) A1 (pwo + ) Zy (pwo + Q)
p=—00 5
4 A
Wgz/nc
Z ay Ry (1) exp(ilP)
l=—o00
N A A z
o i<z -2 2
¢O(T) — TZ Wsg
O lf r > 2 —COS/Z\/T(C




Linearization of Vlasov equation

Now we are ready to equal the Fourier coefficients (index I) individually from
both sides. This yields, in the limit of weak intensity beam, an equation for the
(complex) frequency shifts associated to each mode.

When an observer (impedance) sees the component A,)(z), the beam is
executing the |-th mode of oscillation

Q) —Jw, =1

INve’nc? & Z(|)| (pwo + lws) 12 (pwo + lws )z
2E0 T3 w22 S pwot lw

The imaginary part of the frequency shift gives the growth (or damping) rate
of the mode. It only depends on the real part of the impedance
For a broad band impedance the summation tends to an integral. Since the

real part of the impedance is an even function of the frequency, as well as J 2,
in this case the growth rate of all modes tends to zero because the function
under summation (integral) is an odd function of frequency.

Short-lived wake fields (broad-band impedances) do not make beams
longitudinally unstable
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Linearization of Vlasov equation

The modes given by the index | oscillate at frequencies close to lw..

Since they have been introduced in relation with the azimuthal
structure of the longitudinal phase space, they are referred to as
longitudinal azimuthal modes

From their definition and their oscillation frequencies, they can easily
be associated to well distortion (I=0), dipole oscillation (I=1),
quadrupole oscillation (I=2), etc.

(@ m=0

o LT\

e I N A
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Linearization of Vlasov equation

1. (m=0and I=1) 2. (m=0and [=2)

-04 -0.3 -0.2 -0.1 01 02 03 04
z (m)

Seen at a wide band pick up that can resolve the bunch (e.g. a wall current monitor)

These are mountain range plots showing the evolution in time of the bunch shape

1. The bunch is executing a rigid dipole oscillation in the longitudinal phase space at the
synchrotron frequency

2. The bunch is mismatched in the bucket and it executes a quadrupole oscillation in the

longitudinal phase space at twice the synchrotron frequency
74



)

The Robinson instability , gt

* Aninteresting (and usual) case is when the impedance is peaked around a

value hw, (impedance of the main rf cavity), because only the two terms p=th
in the summation will contribute to the growth rate

* We also take the short bunch approximation (anyway the wake field lasts
much longer than the bunch, being the impedance narrow-band)

hwo?:’ 1 hwgé l hu)(),%
Jl<c>—>ﬂ(2c) for c<<1

1 | Npe*nc?hwy (hw02>2l2

T (N2 2B TEws

{Re Z(|)| (hwo + lws) — Re Z(|)| (hwo — lwy)

\ J
Y

C

Instability or not, depends on the sign of
this part.... Reminds: dRe(Z)/dw(hw,)
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The Robinson instability

 The unstable modes that can be triggered by the rf cavities are called
Robinson modes

* The most unstable one is the fundamental mode |1=1, which is found also with
a simple one particle approach.

I Nye?ne? hwy
T 2B TRw,

[Re Z(|)| (hwo + ws) — Re ch)| (hwo — ws)}

(a) (b)
A A
wr > hwg
mR (DR U
71 > 0 unstable above trans.
71 < 0 stable below trans.
Re Zg (o) Re Z; ()
|
| |
wr < hwy | I
I | |
71 < 0 stable above trans. : : :
(1) > (0 unstable below trans. | | > ® | 1 > ®
J hawg t J hag [
hmo - O hmo + 0 hmo - O hmo + W
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The Robinson instability

Physically, the fundamental Robinson instability comes from the fact
that the revolution frequency of an off-momentum beam is actually
m,(1-M0). If the beam has an energy error, it will start a dipole
oscillation and circulate at a frequency slightly higher than nominal
when 1d<0, or slightly lower when 1o>0. Only if the beam samples
the resistive part of the impedance such that it loses more energy
when 8>0 than when 0<0, the motion will be damped.

Although the Robinson instability was originally considered for the
fundamental mode of the rf cavities, obviously the same analysis
equally applies to all higher order rf modes

— Attention must be paid that none of the pw, lands accidentally on the
wrong side of some higher order impedance peak

— Since there are typically several higher order modes in a cavity, and their
tuning could be difficult to control, it is sometimes better to rely on a
design of the cavity that damps these modes.

The relative tuning of cavities with respect to the beam nominal

revolution frequency is therefore yet one more thing that needs to be

carefully controlled upon crossing transition in an accelerator....
(beside the rf phase and the sign of chromaticity)
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The Robinson instability y

HOMSs in cavities

To avoid getting into troubles with High Order Modes (HOMs) due to Robinson instabilities (or
other types, too), usually cavities are equipped with HOM absorbers, purposely designed to
absorb and suppress all the HOMs in the cavities

Special purpose cavities, like crab cavities for example, which are not required to operate
routinely on their fundamental mode, may need also LOM and SOM absorbers.

Recently, the so called “photonic band” cavities are under investigation: through a special

transverse arrangement (array-like structure), they have a very peaked resonance on the
fundamental mode and naturally have all the HOMs flow away.

HOM Som
Coupler Coupler

Input
G Coupler

LOM =
Coupler
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Radial modes i

)

* Having assumed a water bag model for the unperturbed
distribution, it turned out that one index alone would be
sufficient to describe the collective motion, which we called |
and was introduced in relation with the azimuthal structure in
the longitudinal phase space

* This was an extremely simplified situation. For a general
distribution, two longitudinal indices are needed. We call them |
and n, where n is newly introduced to describe also the radial
structure in the longitudinal phase space.

* Even with a distribution that highlights the radial structure of
the longitudinal phase space, in the limit of zero beam intensity,
all radial modes having the same azimuthal index | are
degenerate and correspond to the same mode frequency
Q=|w,. As the beam intensity is increased slightly, their
frequencies shift away from this unperturbed value and modes
with different n’s will move differently, breaking the previous
degeneracy.



Radial modes i

e Oscillation frequencies of the radial modes for different azimuthal
families can be calculated for parabolic and Gaussian beams, for
example

e Although not rigorous, the formulae here below are used in practice
to establish synchrotron tune shifts and growth rates of the most
prominent radial modes for each azimuthal mode

w' = pwo + lws Effective impedance

[Jip1/2(w2/e)]”
lwz/c|

parabolic F(l) = parabolic

hl (w) E—

3
2 /723
1

wo,\ 2! w?o? _ .
hi(w) = ( CZ) exp (_ C2Z> Gaussian F(l) = S Gaussian




)

Radial modes i

 For each mode, real and imaginary part of the coherent frequency shifts
depend on the effective impedance associated to the mode
* For a broad-band resonator, the effective impedance is purely imaginary

because the real part of the impedance is an even function. Again, we find the
result that a broad-band impedance cannot make a weak beam unstable, not
even when we consider radial modes in the analysis

15
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Mode coupling

All the previous analyses have been made for low intensity
beams, and we always found that instability can only occur
when the impedance consists of sharp peaks, or equivalently,
when the wake fields last longer than the revolution period
(Robinson type)

The previous statement still holds even when radial modes are
included in the analysis

The reason is that, when the considered beam intensity is
weak, the mode frequency shifts are small compared with the
w, and hence, coupling between modes belonging to different
azimuthal families could be excluded.

When the beam intensity is increased and the frequency shifts
become comparable to w,, possible coupling among modes
must be taken into account, which can give rise to a different
type of instability than the Robinson one.

These instabilities are referred to as “microwave”, “mode

n «u n

coupling”, “mode mixing”, “turbulence” -type



Mode coupling

)

Mode coupling is first investigated with an unperturbed water
bag distribution and a broad-band impedance.

As we know, for each azimuthal family, all radial modes
converge together due to the radial degeneracy of the water
bag distribution.

For each azimuthal index |, the mode shift can be expressed as
a function of a parameter Y, proportional to the bunch intensity

For a broad-band impedance model (shunt impedance R), it is
found that there exists a threshold value Y;,, above which two
adjacent modes merge into one, meaning that two previously
real solutions become a pair of complex conjugates, one
damped and the other unstable

Therefore, Y, determines the bunch intensity above which an
instability sets in. This instability is clearly a high intensity effect
and is of a different nature than the one developed at lower
beam intensities for sharply peaked impedances.




Mode 0 does not shift, because
it corresponds to the potential
well distortion. Mode 1 should
not shift either, because it is
related to rigid dipole motion
and the wake field moves with
the beam

The reason why a shift appears
in the plot on the right is that
the term that would cancel it,
i.e. a potential well distortion
term, is neglected in the
mathematical treatment. The
physical behavior of mode 1 is
shown

Unlike in the transverse plane,
since modes 0 and 1 do not
move, mode coupling instability
in the longitudinal plane always
involves modes with 1>2

Mode coupling
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Turbulent bunch lengthening

The mode coupling instability is usually a non-destructive instability.

In fact, as the intensity threshold for this instability is crossed, the beam
becomes unstable and lengthens, causing the parameter Y (inversely

proportional to the 3/2 power of the bunch length) to fall back below
the threshold value.

(8 b L
Z )
A A

é\o / 80

>N : >N
N, x\lth \

Poten.tlal well distortion below mode c Nbeans 02
coupling threshold: example for an 5

electron machine, with bunch shortening TO EOWS Tthr
and constant momentum spread

wIN
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Stability of bunches in

realistic rf systems

Until now, we made an assumption on the Hamiltonian of the system, which limits
the applicability of all results to the case of linear restoring force.

The case of the stability of bunches in realistic rf systems (nonlinear) has been

also studied in detail —at least for single and double sinusoidal voltage in the
accelerating and stationary cases.

The main general result of this study is that the nonlinearity of the force causes a
spread in the synchrotron tune distribution, which helps stabilize the beam
through Landau damping. The instability rates predicted by the case with
linearized terms are therefore the “worst-case” ones.

[
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synchrotron tunes for particles
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amplitudes (case of single harmonic
cavity)
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A Stability of bunches in y

double harmonic rf systems

* The stability of bunches in a double harmonic rf system (accelerating and
stationary bucket) has been studied.

 The main result is that the stability is found to depend on the derivative of the

distribution of synchrotron tunes for particles at different amplitudes in the
bucket:

— Landau damping is lost in regions in which the derivative of the distribution of Q  goes to
zero. Beam current perturbations are enhanced and a microwave-type instability sets in.
— Therefore, the single harmonic bucket is intrinsically stable, but when higher harmonic

cavities are included, sensitive regions of the bunch are created (in fact we fall locally in the
“worst case” mentioned on the previous slide).

1.0

08

Calculated and measured
synchrotron tunes for particles
having different synchrotron
amplitudes (case of double
harmonic cavity)
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Coasting (unbunched) beams st

)

* For an unbunched beam, the previously used equations of longitudinal
motion still hold, assuming that V (z)=0 and the only driving term in the
momentum equation comes from space charge and wake fields

. = —nfScd
¢ = —npc O | Ful(z,t) 04 _

| —- — npe

Po

0

Given the unbunched and periodic nature of the solution, the unperturbed distribution will
be only function of 8 and we express the z-dependence of the perturbation through an

angle variable -
/ Yo(0)dd = 2];7_;%
$(2,6,8) = o (8) + ¥ (6) expli(nd) — )] < 7"
=gt -
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C

2 oo o s . , ,
Fu(z,t) = —— Az, t— Wy(z — 2")dz

— 0

 We change perspective: a charge
located in z at time t feels the effect of
the z’ slice through the wake generated
i in z by the line density at a time
0 ) .
At=(z’-z)/c earlier

* The constant part A, (not a function of
AN R \7 e ool z) only contributes with a constant

term, which is a net energy loss if
fW’O(z)dz>O, or equivalently
Re[Z,!(w=0)]>0, (i.e. the beam
produces dc losses)

 The time varying part of A(z,t)
generates a retarding field potentially
responsible for instabilities

W (z-29\(z,t-(2%-2)/c)dz* Mz t-(z%2)/c)
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2 I
F,(0,t) = —% /%wl(d)dé X /%exp(inﬁ) exp {—iQ (t _ RO . Rﬁ)] Wi (RY — RY")RdY’

CG

Fu,(9,t) = e exp(ind — Ut) ZH / Y1 (6

* We easily recast the wake field driving term in terms of impedance (by
simply using the definition of impedance), and then substitute it in the Vlasov
equation

1 QZH
(—ZQ + in@0)¢1 — innﬁ(ﬁﬁwl — « dwo / ’le d5 =0
Po
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e cZ||

V100 = B To0 — 2o 1—775 / Ya(07)do

_ ez (Q) 05 ()
62E0T0 A Q — Q_J()’n,(l — 775) d5

We now change from the variable 0 to the variable w,, and we
prefer to have a distribution function normalized to unity

wo = wo(1 —nd)

C C

—0(6) = p'(wo) = —mem@g%@)
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Dispersion relation

2|| /

If we specify the momentum (or equivalently, revolution frequency) distribution
the previous dispersion relation can be used to find the solutions Q, expressing
the frequency shift

Complex solutions with positive imaginary part indicate instability

The use of the dispersion relation is often to consider Z,!!(2) as a free complex
number and then draw in the complex (impedance) plane the curve Im[€2]=0,
which is the stability boundary separating the stable region (Im[€2]<0) from the
unstable region (Im[€2]>0)

Then care must be taken that the impedance of the machine falls within the
stability region

This approach is usually considered valid both for coasting beams and for long
bunched beams with slow synchrotron motion (Boussard criterion)

Vi

92




)

Coasting (unbunched) beams

-Im(Z(n)}/nZ,,

Stability boundary for

/ a Gaussian beam

Stability boundary for
a Lorentzian beam

Quartic
distribution

(solid line)

Lorentzian distribution

‘ ‘ : [\' 7 5 ;s Re[Z(n)I/nZ,
Gaussian distribution -

Keil-Schnell circle (dashed)

Exercise: Show that, if the beam is monochromatic (i.e., all particles circulate
with the same revolution frequency w,), it is always unstable above transition
with a capacitive impedance (e.g. space charge) and below transition with an
inductive impedance. The instability with space charge above transition is simply
a negative mass instability

Different distributions have different stability regions, whose extension depends
on the thickness of the tails of the distribution (see above). The mechanism
behind the existence of a stability region is Landau damping (stabilization

through spread of the frequencies), hence it is wider for larger spreads. .
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* |t can be shown that, for a given
impedance, the dispersion :
relation always has two solutions,
with opposite signs of Re[Q2-nw,],
corresponding to a fast wave and ; I l
a slow wave. Both are stable H
inside the stability region, : | ' “
whereas the slow wave is unstable :
outside of it (the fast wave is |
always stable) | i |

* Fast and slow wave can be clearly e
seen in the Schottky spectrum of
the beam, i.e. the Fourier :
transform of a wide-band pick up
installed in a ring. When no ’
significant coherent motion is ,
present (i.e. for weak space
charge and low impedance), the E I
Schottky spectrum simply shows M
lines centered at multiples of w, L )
whose width can be related to the : WMWWM
momentum spread of the beam. oo orouon

**I"" beam current = 0.036 mA

o

h harmonic reproduced
in lower frequency

lamplitudel

el beam current = 0.36 mA Sth harmonic reproduced

in lower frequency

lamplitudel

0.02

0.099 0.0992 0.0995 0.0998 0.1 0.1003 0.1005 0.1008 0.101
frequency / MHz
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Im[Z(n)}/nZ

Stability boundary

—Im[Z(n)]/nZO

for a distribution

with a dip

Re[Z(n)]/nZO

Re[Z(n)]/nZO

-1

N

5

10

A dip in the momentum
distribution function
strongly reduces the
stability region. However,
the instability only serves
the purpose to fill the dip
and create a stable
distribution

Beside the stability
boundary, it is also useful
to draw all curves
Im[€2]=k in the impedance
plane, so that the growth
time of an instability for a
given impedance working
point can be deduced
from the instability chart.
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* |If the detailed spectral information is not available and the dispersion relation
cannot be solved in detail to determine a stability region, the simplified so called
‘Keil-Schnell’ criterion for stability can be used

* Itis a handy formula and gives a rough estimate whether the beam is stable or not
against microwave instability. F is a form factor always close to 1.

* |t can be applied to bunched beams, as well, provided that the growth rate of the
instability is much larger than the synchrotron frequency and the wavelength of the
perturbation (“R/n) is much smaller than bunch length (~40,)

nZ(|)| (nwo)| < Fn®Aw?

Keil-Schnell criterion
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The perturbative Vlasov approach is good to estimate stability regions and
instability rise time, when the beam is expected to become unstable

However, the longitudinal instability of coasting beams can be also solved
numerically by using
— Macroparticle simulations Une>Density

Velocity Distribution

— Poisson-Vlasov solvers
v km/s (a) v km/s
1 i 2 , | I:
o] 0
Eiid -+
: X @K#
40 -40 0 40
zm (b) zm
dg/dz_nC/m
‘ MM;’;IW- ]‘ 0.003% l "l B — Z
0.0015 0.002 -
0.001 0.0015
oo 0.0005] M‘i
40 0 40 -40 0 40
zm (C)
éwuv M - é 50
E
o /\ A B | '
60f / 30! — ..,E,,V.
20 i ! 10p }
0 J/ ' | j/ J\ ‘ 0.0 bt st S
2 <15 -1 05 0 05 1 v:'sl(nfls -4 2 0 zv l‘émls 97
t=150ms t=263ms —40-20 0 20 40 -3-2-10 1 2 3

z [m] v, [km/s]
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The two main features that
emerge from the nonlinear
evolution are:

— Nonlinear wave
steepening leading to
saturation and decay
(formation of holes in
phase space)

— Momentum overshoot:
when the beam reaches
another steady state, the
momentum spread is
typically higher than the
one required to stabilize
the initial beam

The longitudinal instability
measured at the GSI-ESR
shows an impressive
resemblance to the
evolution predicted with a
Vlasov model
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